Presentation is loading. Please wait.

Presentation is loading. Please wait.

MOS-AK Group Meeting : MOS Model 11 MOS Model 11 R. van Langevelde, A.J. Scholten and D.B.M. Klaassen Philips Research, The Netherlands MOS-AK Group Meeting02.

Similar presentations


Presentation on theme: "MOS-AK Group Meeting : MOS Model 11 MOS Model 11 R. van Langevelde, A.J. Scholten and D.B.M. Klaassen Philips Research, The Netherlands MOS-AK Group Meeting02."— Presentation transcript:

1 MOS-AK Group Meeting : MOS Model 11 MOS Model 11 R. van Langevelde, A.J. Scholten and D.B.M. Klaassen Philips Research, The Netherlands MOS-AK Group Meeting02 XFAB, Erfurt October 21, 2002

2 MOS-AK Group Meeting : MOS Model 11 suitable for digital, analog and RF suitable for modern/future CMOS processes physics based simulation time comparable to MM9 number of parameters comparable to MM9 simple parameter extraction Introduction: MOS Model 11 Goals for MOS Model 11 (MM11):

3 MOS-AK Group Meeting : MOS Model 11 Introduction: MOS Model 11 surface-potential-based model accurate transition weak strong inversion symmetrical distortion accurate description of third-order derivatives (i.e. 3 I/ V 3 ) Model developed for accurate distortion analysis in circuit design:

4 MOS-AK Group Meeting : MOS Model 11 Introduction: MOS Model 11 mobility reduction bias-dependent series resistance velocity saturation conductance effects (CLM, DIBL, etc.) gate leakage current gate-induced drain leakage gate depletion quantum-mechanical effects bias-dependent overlap capacitances implemented physical effects:

5 MOS-AK Group Meeting : MOS Model 11 Introduction: availability of MM11 public domain source code in C (including solver) documentation of model and parameter extraction circuit simulators Pstar (Philips in-house) Spectre (Cadence) Hspice (Avant!) ADS (Agilent) Eldo (Mentor Graphics) HSIM (NASSDA)

6 MOS-AK Group Meeting : MOS Model 11 Introduction: structure of MOS Model 11 Junction diodes modelled by JUNCAP-model Geometry Scaling Temperature Scaling Model Equations W, L T

7 MOS-AK Group Meeting : MOS Model 11 MOS Model 11: outline Introduction DC-Model AC-Model Noise Model Model Parameters & Extraction Summary

8 MOS-AK Group Meeting : MOS Model 11 DC-Model: V T -based model interpolation needed between subthreshold and superthreshold (e.g. BSIM4 and MM9) Smoothing function V T -based model: V SB = 0 V V DS = 1 V V GS (V) I DS (A)

9 MOS-AK Group Meeting : MOS Model 11 DC-Model: surface-potential-based model I drift = f(V GB, s0, sL ) I diff = g(V GB, s0, sL ) I DS = I drift + I diff s -based model: single equation for whole operation range : I diff I drift I DS = I drift + I diff V SB = 0 V V DS = 1 V V GS (V) I DS (A)

10 MOS-AK Group Meeting : MOS Model 11 DC-Model: surface potential s Quasi-Fermi Potential V: Substrate V GB Gate EVEV Oxide ECEC EiEi EFEF V V = V SB at Source V = V DB at Drain

11 MOS-AK Group Meeting : MOS Model 11 iterative solution time consuming approximation used: s = s (V GB,V ) (Solid-State Electron. 44, 2000) DC-Model: surface potential approximation

12 MOS-AK Group Meeting : MOS Model 11 DC-Model: surface-potential-based model Description of ideal long-channel MOSFET For real devices several physical effects have to be taken into account: mobility effects conductance effects Special attention to: distortion drain-source symmetry new models

13 MOS-AK Group Meeting : MOS Model 11 DC-Model: distortion behavior 2 nd -order distortion: cancels out in balanced circuit 3 rd -order distortion: limits dynamic range I OUT V IN Harmonic Amplitude accurate description of 3 rd -order derivatives

14 MOS-AK Group Meeting : MOS Model 11 DC-Model: gate-bias induced distortion Gate-bias induced distortion for NMOS, W/L=10/1 m Mobility Reduction and Series-Resistance SymbolsMeasurements LinesMOS Model 11

15 MOS-AK Group Meeting : MOS Model 11 DC-Model: conductance modeling Velocity Saturation Static Feedback and Self-Heating Weak-Avalanche Drain-bias induced distortion for NMOS W/L=10/1 m V SB = 0 V V GS = 2.5 V HD2 HD3 HD1 Channel Length Modulation

16 MOS-AK Group Meeting : MOS Model 11 RF-distortion determined by DC model f=16 MHz f=1 GHz NMOS, W/L=160/0.35 m, V DS =3.3 V, P IN =-5dBm DC-Model: RF-distortion modeling

17 MOS-AK Group Meeting : MOS Model 11 Outline: DC-Model V T vs. s -based models Distortion modeling Symmetry Gate leakage current

18 MOS-AK Group Meeting : MOS Model 11 ideal current equation velocity saturation DIBL/static feedback smoothing function (linear/saturation region) Care has to be taken with the implementation of: DC-Model : drain-source symmetry Symmetry w.r.t. source and drain at V DS = 0 MOS models developed for V DS 0 for V DS < 0, source & drain are interchanged In order to preserve symmetry: I DS ( V GS, V DS, V SB ) = -I DS ( V GD, V SD, V DB )

19 MOS-AK Group Meeting : MOS Model 11 DC-Model : drain-source symmetry Not valid for threshold-voltage-based models MOS Model 9 I DS ( V GS, V DS, V SB ) = -I DS ( V GD, V SD, V DB )

20 MOS-AK Group Meeting : MOS Model 11 DC-Model : drain-source symmetry MOS Model 9 MOS Model 11 MOS Model 9 MOS Model 11 Care has to be taken to preserve symmetry I DS ( V GS, V DS, V SB ) = -I DS ( V GD, V SD, V DB )

21 MOS-AK Group Meeting : MOS Model 11 Outline: DC-Model V T vs. s -based models Distortion modeling Symmetry Gate leakage current

22 MOS-AK Group Meeting : MOS Model 11 Gate Source Drain bulk V GS potential DC-Model: gate leakage current

23 MOS-AK Group Meeting : MOS Model 11 Gate Source Drain bulk V GS { t ox JGJG where: Simplified relation: NMOS, V DS =0V DC-Model: gate leakage current

24 MOS-AK Group Meeting : MOS Model 11 NMOS (in inversion): Gate EVEV Oxide ECEC EiEi EFEF Substrate - Gate current density: tunnelling probability parameters Approximation (at V DS =0 V): electron charge density DC-Model: gate leakage model

25 MOS-AK Group Meeting : MOS Model 11 NMOS, t ox =2 nm, Area=6 m 2 V GS >0 S D IGIGIGIG I GD I GS DC-Model: gate current components

26 MOS-AK Group Meeting : MOS Model 11 V GS >0 S D IGIGIGIG NMOS, t ox =2 nm, Area=6 m 2 I GOV I GD I GS DC-Model: gate current components

27 MOS-AK Group Meeting : MOS Model 11 NMOS, t ox =2 nm, Area=6 m 2 S D IGIGIGIG I GD I GS I GOV V GS <0 DC-Model: gate current components

28 MOS-AK Group Meeting : MOS Model 11 NMOS, t ox =2 nm, Area=6 m 2 V GS <<0 S D IGIGIGIG I GD I GS I GB I GOV DC-Model: gate current components

29 MOS-AK Group Meeting : MOS Model 11 NMOS, t ox =2 nm, Area=6 m 2 V GS <<0 S D IGIGIGIG I GD I GS I GB I GOV DC-Model: gate current components

30 MOS-AK Group Meeting : MOS Model 11 NMOS, t ox =2 nm, Area=6 m 2 determined by overlap region determined by intrinsic region DC-Model: gate leakage model

31 MOS-AK Group Meeting : MOS Model 11 MOS Model 11: outline Introduction DC-Model AC-Model Noise Model Model Parameters & Extraction Summary

32 MOS-AK Group Meeting : MOS Model 11 AC-Model: intrinsic charges n+n+ p n+n n+n : Intrinsic Capacitances: where i, j =G, S, D or B

33 MOS-AK Group Meeting : MOS Model 11 t ox =3.6nm gate depletion effect t ox =3.6nm quantum-mechanical effects t ox =3.2nm charge model includes: accumulation PMOS, V DS =0 V, W/L=80*612/2.5 m AC-Model: input capacitance C GG physical t ox =3.2nm

34 MOS-AK Group Meeting : MOS Model 11 AC-Model: symmetry and reciprocity of capacitances V DS =0V C BD -C BS vs. V G symmetry (C iD =C iS )reciprocity (C ij =C ji ) C DS -C SD vs. V G

35 MOS-AK Group Meeting : MOS Model 11 AC-Model: bias-dependent overlap capacitance n+n+ p n+n+ Source Gate Bulk n+n+ n+n+ Source/Drain Two-terminal MOS-capacitance: accumulation and depletion region included introducing two parameters: k ov and V FBov

36 MOS-AK Group Meeting : MOS Model 11 AC-Model: bias-dependent overlap capacitance PMOS, V DS =0 V, W/L=152*612/0.18 m Short-channel MOSFET, 0.18 m CMOS

37 MOS-AK Group Meeting : MOS Model 11 MOS Model 11: outline Introduction DC-Model AC-Model Noise Model Model Parameters & Extraction Summary

38 MOS-AK Group Meeting : MOS Model 11 1/f noise thermal noise induced gate noise Noise Model: noise types in MOS transistor

39 MOS-AK Group Meeting : MOS Model 11 unified 1/f noise model: BSIM4, MM9 & MM11 bias dependence verified geometrical scaling verified Noise Model: 1/f-noise V gs [Volt] NMOS (Kwok K. Hung et al., IEEE TED-37 (3), p.654, 1990; ibid. (5), p.1323, 1990)

40 MOS-AK Group Meeting : MOS Model 11 Noise Model: thermal noise New expression (MM11)Old expression (BSIM,MM9) thermal noise: (F.M. Klaassen & J. Prins, Philips Res. Repts. 22, p.504, 1967) where:

41 MOS-AK Group Meeting : MOS Model 11 Noise Model: thermal noise (II) 50 Noise Figure (NMOS, W/L=160/0.35 m, V DS =3.3V) (A.J. Scholten et al., IEDM Tech. Dig., pp , 1999) no hot electron effect needed to describe noise behaviour

42 MOS-AK Group Meeting : MOS Model 11 Noise Model: thermal noise (III) 50 noise figure (no noise parameters needed) verified on 0.35 m, 0.25 m and 0.18 m CMOS (A.J. Scholten et al., IEDM Tech. Dig., pp , 1999)

43 MOS-AK Group Meeting : MOS Model 11 MOS Model 11: outline Introduction DC-Model AC-Model Noise Model Model Parameters & Extraction Summary

44 MOS-AK Group Meeting : MOS Model 11 Geometry Scaling Temperature Scaling Model Equations WLWL T 39 miniset parameters 13 temperature scaling parameters 37 geometry scaling parameters Parameters: model structure

45 MOS-AK Group Meeting : MOS Model 11 extract miniset for each dut determine geometry scaling parameter set koko determine temperature scaling measurements Miniset Scaling 1/L E (1/ m) k o (V 1/2 ) example: 0.12 m CMOS Parameters: extraction strategy

46 MOS-AK Group Meeting : MOS Model 11 I D - V GS - curve for various V SB in linear region I D - V DS - and g DS - V DS - curves for various V GS I G - V GS - and I B - V GS - curves for various V DS C GG - V GS - curve at V SB =V DS =0V (optional) required measurements per device Parameters: measurements

47 MOS-AK Group Meeting : MOS Model 11 Measurements Miniset extraction Temperature scaling Geometry scaling Parameters: extraction outline

48 MOS-AK Group Meeting : MOS Model 11 effectparameters threshold I GINV, B INV, I GACC, B ACC, I GOV k O, B subthreshold slope flat-band voltage mobility reduction series resistance conductance impact ionization gate current velocity saturation poly depletion mOmO V FB kPkP, sr, ph, mob, R sat, DIBL, sf, Th a 1, a 2, a 3 Parameters: DC miniset

49 MOS-AK Group Meeting : MOS Model 11 flat-band voltage/poly depletion mobility/series-resistance velocity saturation/conductance (sub)threshold parameters 1 st -order estimation gate current impact ionization extraction strategy: (optional) somewhat different strategy for long- channel and short- channel devices start with long- channel device Parameters: miniset extraction strategy

50 MOS-AK Group Meeting : MOS Model 11 } } 1 st -order parameter estimate Step 1: 1st-order estimation toxtox L NPNP W miniset parameters { doping concentration in polysilicon gate Parameters: miniset extraction of long-channel device

51 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m optimize I D and g m on absolute error: B, k o, and sr Step 1: 1st-order estimation thresholdmobility V GS (V) I D ( A) g m ( A/V) Parameters: miniset extraction of long-channel device

52 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m optimize I D and g m on absolute error: B, k o, and sr Step 1: 1st-order estimation thresholdmobility V GS (V) I D ( A) g m ( A/V) Parameters: miniset extraction of long-channel device

53 MOS-AK Group Meeting : MOS Model 11 optimize C GG on relative error: V FB, B, k o and 1/k P Step 2: V FB /poly-depletion (optional) poly-depletion NMOS W/L=100/10 m C GG (pF) V GS (V) optimization region measurement error due to gate current Parameters: miniset extraction of long-channel device

54 MOS-AK Group Meeting : MOS Model 11 optimize C GG on relative error: V FB, B, k o and 1/k P Step 2: V FB /poly-depletion (optional) poly-depletion NMOS W/L=100/10 m C GG (pF) V GS (V) Parameters: miniset extraction of long-channel device

55 MOS-AK Group Meeting : MOS Model 11 optimize I D on relative error: B, k o and m o Step 3: subthreshold parameters NMOS W/L=10/10 m V GS (V) I D (A) optimization region measurement 1 Parameters: miniset extraction of long-channel device

56 MOS-AK Group Meeting : MOS Model 11 optimize I D on relative error: B, k o and m o Step 3: subthreshold parameters NMOS W/L=10/10 m V GS (V) I D (A) measurement 1 Parameters: miniset extraction of long-channel device

57 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m optimize I D and g m on relative error:, sr, ph and mob Step 4: mobility parameters V GS (V) I D ( A) g m ( A/V) optimization region mobility reduction Parameters: miniset extraction of long-channel device

58 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m Step 4: mobility parameters V GS (V) I D ( A) g m ( A/V) optimize I D and g m on relative error:, sr, ph and mob mobility reduction Parameters: miniset extraction of long-channel device

59 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m Step 5: velocity saturation/conductance V DS (V) I D ( A) g DS (A/V) optimize I D on absolute error: sat optimize g DS on relative error:, sf and Th velocity saturation conductance Parameters: miniset extraction of long-channel device

60 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m V DS (V) I D ( A) g DS (A/V) Step 5: velocity saturation/conductance optimize I D on absolute error: sat optimize g DS on relative error:, sf and Th velocity saturation conductance Parameters: miniset extraction of long-channel device

61 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m Step 6: gate current parameters V GS (V) I G ( A) optimize I G on absolute error: B inv and I GINV gate-to-channel current Parameters: miniset extraction of long-channel device

62 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m gate-to-channel current Step 6: gate current parameters V GS (V) I G ( A) optimize I G on absolute error: B inv and I GINV optimize I G on relative error: I GACC and I GOV gate-bulk & overlap current Parameters: miniset extraction of long-channel device

63 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m Step 6: gate current parameters V GS (V) I G ( A) optimize I G on absolute error: B inv and I GINV optimize I G on relative error: I GACC and I GOV gate-bulk & overlap current Parameters: miniset extraction of long-channel device

64 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m optimize I D and g m on relative error:, sr, ph and mob Repeat steps 3 through 6, e.g. step 4: V GS (V) I D ( A) g m ( A/V) optimization region error due to gate current Parameters: miniset extraction of long-channel device

65 MOS-AK Group Meeting : MOS Model 11 NMOS W/L=10/10 m optimize I D and g m on relative error:, sr, ph and mob Repeat steps 3 through 6, e.g. step 4: V GS (V) I D ( A) g m ( A/V) Parameters: miniset extraction of long-channel device

66 MOS-AK Group Meeting : MOS Model 11 Measurements Miniset extraction Temperature scaling Geometry scaling Parameters: extraction outline

67 MOS-AK Group Meeting : MOS Model 11 binning scaling rules fast and easy, however not physical reproduces minisets use 170 parameters per bin physical scaling rules somewhat more elaborate, but physical gives insight in technology use 90 parameters per technology two types of geometry scaling rules can be used: Parameters: geometry scaling rules

68 MOS-AK Group Meeting : MOS Model 11 physical scaling rules have different forms per miniset parameter, e.g.: scaling parameters determined from miniset values or: geometry scaling parameters Parameters: physical geometry-scaling rules

69 MOS-AK Group Meeting : MOS Model 11 MM11 scaling rule scaling of body factor k o NMOS W = 10 m miniset values Parameters: geometry scaling of body factor k o

70 MOS-AK Group Meeting : MOS Model 11 MM11 scaling rule conventional scaling rule conventional scaling: scaling of gain factor PMOS W = 10 m Parameters: geometry scaling of gain factor

71 MOS-AK Group Meeting : MOS Model 11 physical geometry scaling fits of linear region (PMOS) W/L = 10/10 m V GS (V) I D ( A) I D (mA) W/L = 10/0.8 mW/L = 10/0.12 m Parameters: geometry scaling: I D -V GS -curves

72 MOS-AK Group Meeting : MOS Model 11 physical geometry scaling fits of linear region (PMOS) V GS (V) g m ( A/V) g m (mA/V) Parameters: geometry scaling: g m -V GS -curves W/L = 10/10 mW/L = 10/0.8 mW/L = 10/0.12 m

73 MOS-AK Group Meeting : MOS Model 11 physical geometry scaling fits of subthreshold region (PMOS) V GS (V) I D (A) V GS (V) I D (A) Parameters: geometry scaling: subthreshold curves W/L = 10/10 mW/L = 10/0.8 mW/L = 10/0.12 m

74 MOS-AK Group Meeting : MOS Model 11 physical geometry scaling fits of output curves (PMOS) V DS (V) I D (mA) I D ( A) I D (mA) Parameters: geometry scaling: I D -V DS -curves W/L = 10/10 mW/L = 10/0.8 mW/L = 10/0.12 m

75 MOS-AK Group Meeting : MOS Model 11 physical geometry scaling fits of output curves (PMOS) g DS (A/V) V DS (V) g DS (A/V) V DS (V) Parameters: geometry scaling: g DS -V DS -curves W/L = 10/10 mW/L = 10/0.8 mW/L = 10/0.12 m

76 MOS-AK Group Meeting : MOS Model 11 physical geometry scaling fits of gate current (PMOS) V GS (V) |I G | (A) V GS (V) |I G | (A) Parameters: geometry scaling: I G -V GS -curves W/L = 10/10 mW/L = 10/0.8 mW/L = 10/0.12 m

77 MOS-AK Group Meeting : MOS Model 11 Summary use of s -formulations results in accurate description of moderate inversion region improved description of several physical effects results in accurate and symmetrical description of currents, charges, noise and distortion fulfills Compact Model Council benchmark tests parameters determined from I-V and C-V measurements no increase in number of parameters no increase in simulation time MOS Model 11, fulfills demands for advanced compact MOS modelling: Excellent description of RF distortion

78 MOS-AK Group Meeting : MOS Model 11 Why is MM11 in the public domain? Surface-potential-based model Accuracy of s -approximation Linear/saturation region transition Drain/source partitioning of I G Poly-depletion effect Quantum-mechanical effects Temperature scaling Binning geometry-scaling rules Literature Appendices

79 MOS-AK Group Meeting : MOS Model 11 W Semiconductors is a manufacturer with over 85% of sales to external customers Appendix: Why is MM11 in the public domain? Hence it makes sense to have MM11 available for the outside world: customers can use it vendors of EDA & extraction tools implement model facilitates communication about processes and wafer model is open for discussion and improvements

80 MOS-AK Group Meeting : MOS Model n+n+ p n+n n+n Appendix: surface-potential-based model I DS

81 MOS-AK Group Meeting : MOS Model 11 Surface PotentialDrain Current I D -V GS at V DS =1 V Appendix: surface-potential-based model (II)

82 MOS-AK Group Meeting : MOS Model 11 Surface PotentialDrain Current I D -V DS at V GB - V FB =2 V V DS =0 V Appendix: surface-potential-based model (III)

83 MOS-AK Group Meeting : MOS Model 11 Appendix: accuracy of surface potential approximation absolute error in s relative error in I DS error in I DS due to s error is negligible

84 MOS-AK Group Meeting : MOS Model 11 Appendix: linear/saturation transition Model incorporates linear/saturation region for long-channel case: Short-channel devices: Approximation used: s = s (V GB,V DSx + V SB ) (K. Joardar et al, IEEE TED-45, pp , 1998) where:

85 MOS-AK Group Meeting : MOS Model 11 Appendix: gate current partitioning S I GD I GS D IGIG NMOS, t ox =2 nm, W/L=10/0.6 m

86 MOS-AK Group Meeting : MOS Model 11 Appendix: poly-depletion effect body factor of poly-silicon: depletion layer formed in Gate resulting in effective Gate potential: GateOxide Substrate V GB > V FB

87 MOS-AK Group Meeting : MOS Model 11 Appendix: poly-depletion effect V GS (V) C GG (pF) W/L= 10/10 m k P = V GS (V) I D ( A) W/L= 10/10 m k P =2 drain currentgate capacitance influence of poly-depletion (V DS =50mV, V SB =0V)

88 MOS-AK Group Meeting : MOS Model 11 Appendix: poly-depletion effect NMOSPMOS 0.18 m CMOS W/L=80*612/2.5 m using electrical t ox =3.6nmphysical t ox =3.2nm

89 MOS-AK Group Meeting : MOS Model 11 Appendix: quantum-mechanical effects Gate E V Oxide E C E i E F Substrate E energy quantization results in V T charge centroid results in t ox

90 MOS-AK Group Meeting : MOS Model 11 Appendix: quantum-mechanical effects inversion-layer is formed at distance y from interface effective oxide thickness: (F. Stern, CRC Crit. Rev. Solid State Sci., pp , 1974)

91 MOS-AK Group Meeting : MOS Model 11 Appendix: quantum-mechanical effects using physical t ox =3.2nm NMOSPMOS 0.18 m CMOS W/L=80*612/2.5 m

92 MOS-AK Group Meeting : MOS Model 11 temperature scaling rules of the form: miniset parameters at room temperature are exactly reproduced where T R is room temperature or temperature scaling parameters Appendix: temperature scaling

93 MOS-AK Group Meeting : MOS Model 11 mobility/series-resistance velocity saturation (sub)threshold parameters 1 st -order estimation impact ionization extraction strategy: somewhat different strategy for long- channel and short- channel devices start extraction for long-channel device (use default values of temperature parameters as 1 st -order estimation) Appendix: temperature-scaling extraction

94 MOS-AK Group Meeting : MOS Model 11 optimize I D on relative error: Step 1: subthreshold parameters NMOS W/L=10/10 m V GS (V) I D (A) V GS (V) T=125ºCT=-40ºC Appendix: temperature scaling long-channel device

95 MOS-AK Group Meeting : MOS Model 11 optimize I D on relative error: Step 1: subthreshold parameters NMOS W/L=10/10 m V GS (V) I D (A) V GS (V) T=125ºCT=-40ºC Appendix: temperature scaling long-channel device

96 MOS-AK Group Meeting : MOS Model 11 optimize I D on relative error:, sr and ph Step 2: mobility parameters NMOS W/L=10/10 m V GS (V) I D ( A) T=125ºCT=-40ºC Appendix: temperature scaling long-channel device

97 MOS-AK Group Meeting : MOS Model 11 Step 2: mobility parameters NMOS W/L=10/10 m V GS (V) I D ( A) T=125ºCT=-40ºC optimize I D on relative error:, sr and ph Appendix: temperature scaling long-channel device

98 MOS-AK Group Meeting : MOS Model 11 optimize I D on relative error: sat Step 3: velocity saturation NMOS W/L=10/10 m V DS (V) I D ( A) T=125ºCT=-40ºC Appendix: temperature scaling long-channel device

99 MOS-AK Group Meeting : MOS Model 11 Step 3: velocity saturation NMOS W/L=10/10 m V DS (V) I D ( A) T=125ºCT=-40ºC optimize I D on relative error: sat Appendix: temperature scaling long-channel device

100 MOS-AK Group Meeting : MOS Model minisets binning rules based on physical scaling no parameter jumps at bin borders minisets are exactly reproduced at corners binning parameter set is calculated from minisets no extra extraction or optimization needed Appendix: binning geometry-scaling rules

101 MOS-AK Group Meeting : MOS Model 11 Appendix: literature Effect of gate-field dependent mobility degradation on distortion analysis in MOSFETs, R. v. Langevelde and F.M. Klaassen, IEEE Trans. El. Dev., Vol.44, p.2044, 1997 Accurate drain conductance modeling for distortion analysis in MOSFETs, R. v. Langevelde and F.M. Klaassen, IEDM97 Technical Digest, p.313, 1997 A compact MOSFET model for distortion analysis in analog circuit design, R. v. Langevelde, Ph.D. Thesis, University of Technology Eindhoven, 1998 Accurate thermal noise model for deep sub-micron CMOS, A.J. Scholten et al., IEDM99 Technical Digest, p.155, 1999 An explicit surface-potential-based MOSFET model for circuit simulation, R. v. Langevelde and F.M. Klaassen, Solid-State Electron., Vol.44, p.409, 2000 CMC benchmark tests

102 MOS-AK Group Meeting : MOS Model 11 Appendix: literature RF-Distortion characterisation of sub-micron CMOS, L.F. Tiemeijer et al., Proc. ESSDERC00, p.464, 2000 RF-Distortion in deep sub-micron CMOS technologies, R. v. Langevelde et al., IEDM00 Technical Digest, p.807, 2000 BSIM4 and MOS Model 11 benchmarks for MOSFET capacitances, A.J. Scholten et al., CMC meeting, March 2001, MOS Model 11, Level 1100, R. v. Langevelde, Nat.Lab. Unclassified Report NL-UR 2001/813, April 2001, see website Compact MOS modelling for RF circuit simulation, A.J. Scholten et al., Proc. SISPAD01, p.194, 2001 Advanced compact MOS modelling, R. v. Langevelde et al., Proc. ESSDERC01, p.81, 2001

103 MOS-AK Group Meeting : MOS Model 11 Appendix: literature Compact modelling of pocket-implanted MOSFETs, A.J. Scholten et al., Proc. ESSDERC01, p.311, 2001 Gate current: Modeling, L extraction and impact on RF performance, R. v. Langevelde et al., IEDM01 Technical Digest, p.289, 2001 Parameter extraction for surface-potential based compact MOS Model 11, R. v. Langevelde, Agilent World-Wide IC-CAP Users Conference, Dec MOS Model 11, Level 1101, R. v. Langevelde et al., Nat.Lab. Unclassified Report NL-UR 2002/802, June 2002, see website


Download ppt "MOS-AK Group Meeting : MOS Model 11 MOS Model 11 R. van Langevelde, A.J. Scholten and D.B.M. Klaassen Philips Research, The Netherlands MOS-AK Group Meeting02."

Similar presentations


Ads by Google