Presentation is loading. Please wait.

Presentation is loading. Please wait.

PRIOR KNOWLEDGE: PROPERTIES OF LINEAR GRAPHS WHAT ARE THE BASIC PROPERTIES OF A LINEAR GRAPH? Introduction to Quadratic Graphs.

Similar presentations


Presentation on theme: "PRIOR KNOWLEDGE: PROPERTIES OF LINEAR GRAPHS WHAT ARE THE BASIC PROPERTIES OF A LINEAR GRAPH? Introduction to Quadratic Graphs."— Presentation transcript:

1 PRIOR KNOWLEDGE: PROPERTIES OF LINEAR GRAPHS WHAT ARE THE BASIC PROPERTIES OF A LINEAR GRAPH? Introduction to Quadratic Graphs

2 Properties of Linear Graphs Line is straight Line can travel from left to right, or right to left Line can only be a maximum of 3 quadrants on the plane Rate of change (slope) is constant everywhere on the line

3 However, not everything can be described using a linear (straight line) graph. So, We Know About the Main Properties of Linear Graphs

4 Lets Begin... There is a mythical creature called a Walkasaurs The table provided shows how Walkasaurs height changes with time Time (years)Height (metres)

5 Points to Ponder... Do you notice a pattern in the rate of growth of the walkasaurus? Is the change in height each year the same? (a constant number) Can you complete the table for the remaining years? If I draw this graph will it be a straight line(linear) ? Why or why not? Time (years)Height (metres)

6 Drawing the graph Complete the table and plot the graph. Time (years)Height (metres)

7 The Graph Time (years) Height (metres)

8 Finding the Pattern Time (years) Height (metres) 1 st change 2 nd change The first change is not a constant number, as is the case in a linear graph, however the 2 nd change is a constant, this is one of the properties of a quadratic graph.

9 Motor Cyclist The image below shows a motor cycle jumping a ramp. What shape is the path that the motor cycle follows?

10 The graph is curved, lets look at it in some more detail.. Is this the graph of a quadratic? Your Turn..See Handout 1.7 Pg. 5

11 Finding the Pattern Distance travelled (m) Height (m) 1 st Change 2 nd Change – – – – – 0.8 – – 0.8 – – 0.8 – – 0.8 – – 0.8 – Note: The second differences (or changes) are constant, therefore the graph is Quadratic

12 Speed (km/h) Lift (net upward force) (Newtons) For a given wing area the lift of an aeroplane is proportional to the square of its speed. The table below shows the lift of a Boeing 747 jet airline at various speeds. (a) Is the pattern of lifts quadratic? Give a reason for your answer. (b) Sketch the graph to show how the lift increases with speed. A Boeing 747 weighs Newtons at takeoff. (c) Estimate how fast the plane must travel to get enough lift to take flight. (d) Explain why bigger planes need longer runways. Aeroplane Lift Off

13 Speed (km/h) Lift (net upward force) (Newtons) st Change nd Change22680 Speed (km/h) Lift (N) Because the second differences are constant, the pattern is quadratic. See Geogebra File

14 Height Distance Angry Birds!!

15 Table of Values: Angry Birds!! Height Distance

16 Height Distance Table of Values: Angry Birds!! See Geogebra file

17 Your turn.. See handout Growing Squares Pattern. Draw the next two patterns of growing squares.

18 Create a List of the Properties of Quadratic Graphs 1.They are curved. 2.The 1 st change is not constant, but the 2 nd change is constant 3.They can occupy all 4 quadrants of the plane

19 Introduction to Cubic Graphs

20 Cubic Graphs As previously discussed, not every thing can be described by a straight line, nor can everything be described by a or shaped curve. Lets take a look at the shape of a roller coaster. It looks like 2 quadratics stuck together. But does it have the properties of a quadratic, i.e. The second differences will be constant?

21 Initial height = 0 m Bird Journey See animated power point on bird graph

22 Looking at the Data The distance the bird travelled and its change in height relative to its starting position is given in the table below: If we were to graph this data, what shape would the graph be? Distance Travelled (m) Change in height (m) 12100– 12– 20– 180

23 Looking at the Change in the Data Distance Travelled (m) Change in height (m) 12100– 12– 20– st Change– 2– 10– 12– nd Change– 8– rd Change6666 First change not a constant, so graph will not be LINEAR Second change not a constant, so graph will not be QUADRATIC Third change is a constant, this means the graph is a CUBIC

24 Graph of Birds Journey Change in height(m) [Relative to starting position] Distance travelled (m) [Relative to starting position] (2,12) H (3,10) (4,0) (5,–12) (7,–18) (6,–20) (8,0)

25 For a cube with edge lengths of 1 unit, the perimeter of the base is 4 units, the surface area is 6 square units And the volume is 1 cubic unit. What would the values be for a block with edge lengths of 2 units or 3 units or 34 units or n units? Make tables for perimeter, for surface area and for volume as the edge lengths of the block increase. Examine the tables to predict the shape of the graph for each of the three relationships. Explain your predictions. Make the graphs for perimeter vs. edge length, surface area vs. edge length and volume vs. edge length and compare them with your predictions. Using a Cube to Investigate Cubic Functions Vertex Face Edge 1 unit

26 RECOGNIZE AND DESCRIBE AN EXPONENTIAL PATTERN. USE AN EXPONENTIAL PATTERN TO PREDICT A FUTURE EVENT. COMPARE EXPONENTIAL AND LOGISTIC GROWTH. Introducing Exponential Functions

27 Recognising an Exponential Pattern A sequence of numbers has an exponential pattern when each successive number increases (or decreases) by the same percent. Here are some examples of exponential patterns: Growth of a bacteria culture Growth of a mouse population during a mouse plague Decrease in the atmospheric pressure with increasing height Decrease in the amount of a drug in your bloodstream

28 Recognising an Exponential Pattern Describe the pattern for the volumes of consecutive chambers in the shell of a chambered nautilus. Solution: It helps to organize the data in a table. Chamber Volume (cm 3 ) Begin by checking the differences of consecutive volumes. Source: Larson Texts

29 Recognising an Exponential Pattern Begin by checking the differences of consecutive volumes to conclude that the pattern is not linear or Quadratic. Then find the ratios of consecutive volumes. Chamber Volume (cm 3 )

30 Checking the Ratios The volume of each chamber is about 6.3% greater than the volume of the previous chamber. So, the pattern is exponential. Notice the difference between linear and exponential patterns. With linear patterns, successive numbers increase or decrease by the same amount. With exponential patterns, successive numbers increase or decrease by the same ratio. Chamber Volume (cm 3 )

31 Your Turn: See Handout Algae Bloom

32 Who Will Do Better? You and your friend have both been offered a job on a construction site. Both of you will have to work 28 consecutive days to finish the project. Your friend is offered 25,000 per week. (for 4 weeks) You negotiate your contact as follows: You can pay me 2 cent for the first day, 4 cent for the second day, 8 cent for the third day, and so on, just double my pay each day for 28 days. Who has negotiated the better deal?

33 End of Week 1 Time (days)Money (Cents) Total: 510 cents (5.10) So at the end of week 1, You have earned 5.10, but your friend has earned 25,000. It would seem your friend has secured the better deal !

34 Table for the First 10 Days View Handout Time (days)Money (Cents)

35 But...What Will Happen After 28 Days? Your final days pay will be 5,368, Not bad for one days work! Time (days)Money (Cents) 214,194, ,388, ,777, ,554, ,108, ,217, , ,870,912

36 Both Graphs the Same but the Scales are Different Tripling my pay Doubling my pay

37 Exponential Graphs: Equation Final Amount Starting Value Growth Factor Intervals of time

38 Table for the first 10 days View Handout Time (days) Money (Cents) First chang e Second change Pattern 022x2 0 = x2 1 = x2 2 = x2 3 = x2 4 =

39 Table for the First 10 Days Time (days) Money (Cents) Pattern 022 x 2 0 = x 2 1 = x 2 2 = x 2 3 = x 2 4 = ,435,4562x2 27 = ,870,9122x2 28 = 2 29 Can you identify how the variables in the above formula relate to the values in the table? View handout

40 The Power of Exponential Functions

41 Identifying Graphs..Your turn Below are 4 sections of 4 different graphs, using the data provided, identify each type of graph, and give a reason for your answer. Graph 1Graph 2Graph 3Graph 4

42 Conclusion If a graph is Linear, the first change is constant If a graph is quadratic, the second change is constant If a graph is a cubic, the third change is constant If a graph is exponential, successive numbers increase or decrease by the same ratio.


Download ppt "PRIOR KNOWLEDGE: PROPERTIES OF LINEAR GRAPHS WHAT ARE THE BASIC PROPERTIES OF A LINEAR GRAPH? Introduction to Quadratic Graphs."

Similar presentations


Ads by Google