Download presentation

1
**12. Inequalities and Linear Programming**

(a) How to solve the quadratic inequalities in one unknown by using graphical method? (i) a > 0, solve ax2+bx+c > 0. Using the graph of y = ax2+bx+c, find the range of values of x by reading the points lying above the x-axis. y x y = ax2+bx+c The x-intercepts of the quadratic graph y = ax2+bx+c are and β. For y > 0, or x < x >β the solution of the inequality is above the x-axis, i.e. the blue curve. O β

2
**12. Inequalities and Linear Programming**

(a) How to solve the quadratic inequalities in one unknown by using graphical method? (i) a > 0, solve ax2+bx+c < 0. Using the graph of y = ax2+bx+c, find the range of values of x by reading the points lying below the x-axis. y x y = ax2+bx+c The x-intercepts of the quadratic graph y = ax2+bx+c are and β. For y < 0, the solution of the inequality is below the x-axis, i.e. the orange curve. O β < x <β

3
**12. Inequalities and Linear Programming**

(a) How to solve the quadratic inequalities in one unknown by using graphical method? (ii) a < 0, solve ax2+bx+c > 0. Using the graph of y = ax2+bx+c, find the range of values of x by reading the points lying above the x-axis. ∵ The quadratic graph is vertically y x y = ax2+bx+c a < x <β inverted compared with (i), ∴ The range of values of x is O β opposite to the case a > 0. For y > 0, the solution of the inequality is above the x-axis, i.e. the blue curve.

4
**12. Inequalities and Linear Programming**

(a) How to solve the quadratic inequalities in one unknown by using graphical method? (ii) a < 0, solve ax2+bx+c < 0. Using the graph of y = ax2+bx+c, find the range of values of x by reading the points lying below the x-axis. ∵ The quadratic graph is vertically y x y = ax2+bx+c inverted compared with (i), ∴ The range of values of x is O β opposite to the case a > 0. For y < 0, or x < x >β the solution of the inequality is below the x-axis, i.e. the orange curve.

5
**12. Inequalities and Linear Programming**

(b) For algebraic method, how to use the graphs or tables to find the solutions of the quadratic inequalities in one unknown? E.g. (i) Solve the inequality x2-3x -10 > 0. Consider x2-3x -10 = 0, y x y = x2-3x+10 O 5 -2 (x+2)(x-5) = 0 x = -2 or x = 5 x < -2 x > 5 Graphical ∵ a = 1, i.e. a > 0 ∴ According to the above result, we can sketch the graph. The graph above the x-axis stand for y > 0. ∴ or

6
**12. Inequalities and Linear Programming**

(b) For algebraic method, how to use the graphs or tables to find the solutions of the quadratic inequalities in one unknown? E.g. (i) Solve the inequality x2-3x -10 > 0. Consider x2-3x -10 = 0, (x+2)(x-5) = 0 x = -2 or x = 5 Tabular x < -2 -2 < x < 5 x > 5 x+2 x-5 (x+2)(x-5) -2<x<5 -2+2<x+2<5+2 0<x+2<7 x+2>0 -2<x<5 -2-5<x-5<5-5 -7<x-5<0 x-5<0 x>5 x+2>5+2 x+2>7 x+2>0 x<-2 x-5<-2-5 x-5<0 x<-2 x+2<-2+2 x+2<0 - + + x>5 x-5>5-5 x-5>0 x+2>0 x-5>0 (x+2)(x-5)>0 x+2>0 x-5<0 (x+2)(x-5)<0 x+2<0 x-5<0 (x+2)(x-5)>0 - - + + - + ∴ x < -2 or x > 5

7
**12. Inequalities and Linear Programming**

(b) For algebraic method, how to use the graphs or tables to find the solutions of the quadratic inequalities in one unknown? E.g. (ii) Solve the inequality x2+5x-6 < 0. Consider x2+5x-6 = 0, y x y = x2+5x-6 1 -6 O (x+6)(x-1) = 0 x = -6 or x = 1 Graphical ∵ a = 1, i.e. a > 0 ∴ According to the above result, we can sketch the graph. -6 < x < 1 The graph below the x-axis stand for y < 0. ∴

8
**12. Inequalities and Linear Programming**

(b) For algebraic method, how to use the graphs or tables to find the solutions of the quadratic inequalities in one unknown? E.g. (ii) Solve the inequality x2+5x-6 < 0. Consider x2+5x-6 = 0, (x+6)(x-1) = 0 x = -6 or x = 1 Tabular x < -6 -6 < x < 1 x > 1 x+6 x-1 (x+6)(x-1) -6<x<1 -6+6<x+6<1+6 0<x+6<7 x+6>0 -6<x<1 -6-1<x-1<1-1 -7<x-1<0 x-1<0 x<-1 x-1<-6-1 x-1<-7 x-1<0 x>1 x+6>1+6 x+6>7 x+6>0 x<-6 x+6<-6+6 x+6<0 - + + x>1 x-1>1-1 x-1>0 x+6>0 x-1<0 (x+6)(x-1)<0 x+6<0 x-1<0 (x+6)(x-1)>0 x+6>0 x-1>0 (x+6)(x-1)>0 - - + + - + ∴ -6 < x < 1

9
**12. Inequalities and Linear Programming**

Solving Quadratic Inequalities Easy Memory Tips： ax2+bx+c > 0 a > 0 When the quadratic function and a (the coefficient of ax2+bx+c < 0 a < 0 x2) are both larger than zero or smaller than zero, the solution of the inequality is x < or x >β. ax2+bx+c > 0 a < 0 Otherwise, the solution of the inequality is < x <β. ax2+bx+c < 0 a > 0

Similar presentations

OK

5-1 Graphing Quadratic Functions Algebra II CP. Vocabulary Quadratic function Quadratic term Linear term Constant term Parabola Axis of symmetry Vertex.

5-1 Graphing Quadratic Functions Algebra II CP. Vocabulary Quadratic function Quadratic term Linear term Constant term Parabola Axis of symmetry Vertex.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on asian continent videos Ppt on acute coronary syndromes Ppt on national urban health mission Ppt on air pressure and wind system Ppt on search engine working Ppt on blood stain pattern analysis equation Ppt on intel core i3 processor Ppt on pacific ring of fire Ppt on e-waste disposal Ppt on accounting standard 12