Download presentation
Presentation is loading. Please wait.
Published byJaeden Barraclough Modified over 3 years ago
1
D. Bonamy, F. Célarié, C. Guerra-Amaro, L. Ponson, C.L. Rountree, E. Bouchaud GROUPE FRACTURE Service de Physique et Chimie des Surfaces et des Interfaces CEA-Saclay, France Collaboration S. Morel (US2B, Bordeaux, France) H. Auradou, J.-P. Hulin (FAST, Orsay, France) MatGenIV, Cargèse, September 2007 FRACTURE MECHANISMS & SCALING PROPERTIES OF FRACTURE SURFACES
2
Scale of the material heterogeneities Include the basic mechanisms into a statistical description Macroscopic scale Mechanics of materials MatGenIV, Cargèse, September 2007
3
No easy averaging at a crack tip: Strong stress gradient The most brittle link breaks first Rare events statistics No «equivalent effective» material (r) r Inglis (1913), Griffith (1920) c 0 0 MatGenIV, Cargèse, September 2007
4
Fractography: + 3D observations : Collective effects - History reconstruction In situ observations: + Real time observation of basic mechanisms - Confined to the free surface Experimental tools MatGenIV, Cargèse, September 2007
5
1- Scaling properties of fracture surfaces 2- Statistical model… & model experiment 3- Damage: a general mechanism? 4- Conclusion & Work in progress OUTLINE MatGenIV, Cargèse, September 2007
6
x z h z h 1- Scaling properties… =0.75 Self-affine profile 1/2 (nm) Slope: =0.75 ζ ~ 0.8 independent of material & loading; depends on material
7
Ti 3 Al-based alloy = 0.78 5 nm 0.5mm 1- Scaling properties… Profiles perpendicular to the direction of crack propagation = 0.78 z h max (z) MatGenIV, Cargèse, September 2007
8
Aluminum alloy =0.77 3nm 0.1mm 1- Scaling properties… = 0.77 z h max (z) Profiles perpendicular to the direction of crack propagation MatGenIV, Cargèse, September 2007
9
Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-cristaux (STM) 130mm 1- Scaling properties… Δh 2D (Δz, Δx) = ( A ) 1/2 h (nm) z (nm) AB ΔxΔx ΔzΔz L. Ponson, D. Bonamy, E.B. PRL 2006 L. Ponson et al, IJF 2006 h/ x z/ x 1/ z = 0.75 = 0.6 Z = / ~ 1.2 z
10
Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm Quasi-crystals Courtesy P. Ebert Coll. L. Barbier, P. Ebert z z = 0.75 = 0.6 z = / ~ 1.2 h (Å) 1- Scaling properties…
11
Béton (Profilométrie) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm = 0.75 = 0.6 z = / ~ 1.2 h/ x z/ x 1/ z h (Å) 1- Scaling properties…
12
Mortar (Profilometry) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm = 0.75 = 0.6 z = / ~ 1.2 h/ x z/ x 1/ z Mortar (Coll. S. Morel & G. Mourot) h (Å) 1- Scaling properties…
13
Mortar (Profilometry) Glass (AFM) Metallic alloy (SEM+Stereo) Quasi-crystals (STM) AB ΔxΔx ΔzΔz 130mm z/ x 1/z ( l z / l x ) 1/ ( z/ l z )/( x/ l x ) 1/ z h/ x ( h/ l x )/( x/ l x ) Universal structure function Very different length scales h (Å) 1- Scaling properties…
14
General result : anisotropic self-affine surface independent of disorder Crack front= «elastic line» Fracture surface = trace left behind by the front J.-P. Bouchaud, EB, G. Lapasset, J. Planès (93) 2- Statistical models
15
D. Bonamy et al, PRL 2006 K II Linear elastic material Weak distorsions K II = 0 z x f(x,z) KI0KI0 KI0KI0 h(x,z) 2- Statistical models Principle of local symmetry
16
(x,z,h(x,z))= q (z,h(x,z))+ t (z,x) + t (z,x) ζ=0.39 A. Rosso & W. Krauth (02) β=0.5 and z =0.8 O.Duemmer & W. Krauth (05) 2- Statistical models MatGenIV, Cargèse, September 2007 Logarithmic roughness S. Ramanathan, D. Ertaş & D. Fisher (97)
17
« Model » material: sintered glass beads (L. Ponson et al, PRL06; coll. H. Auradou, J.-P. Hulin & P. Vié) Porosity 3 to 25% Grain size 50 to 100 m Vitreous grain boudaries Linear Elastic Material 2- … & model experiment MatGenIV, Cargèse, September 2007
18
ζ=0.4 ± 0.05 β=0.5 ± 0.05 z =ζ/β=0.8 ±0.05 3 exponents Universal 2D correlation function + Structure 2D Packing of sintered glass beads 1/ z 2- … & model experiment
19
3- Damage… What did we MISS ? Damage ! Amorphous silica Ti 3 Al-based alloy Roughness measurements performed within the damaged zone ! damaged zone size MatGenIV, Cargèse, September 2007
20
Disorder line roughness Elastic restoring forces rigidity of the line Undamaged material Transmission of stresses through long range undamaged material :long range interactions (1/r 2 ) very rigid line 3- Damage… Transmission of stresses through a « Swiss cheese »: Screening of elastic interactions lower rigidity Long range Short range MatGenIV, Cargèse, September 2007
21
3- Damage… r « R c r » R c RcRc Damage zone scale Large scales : elastic domain MatGenIV, Cargèse, September 2007 =0.75, =0.6 =0.4, =0.5 OR log ?
22
=0.75 h ~ log z =0.75 h ~ log z Rc ~ 30nm 75 nm 3- Damage…
23
Quasi-brittle material: Mortar… … In transient roughening regime R c increases with time Rc(x 1 ) =0.75 =0.4 x1x1 x2x2 75nm Rc(x 1 ) Rc(x 2 ) =0.75 =0.4 Coll. S. Morel 3- Damage… MatGenIV, Cargèse, September 2007
24
Steel broken at different temperatures (Coll. S. Chapuilot) toughness yield stress T=20K, Y = 1305MPa, K Ic = 23MPa.m 1/2 Rc = 20 µm =0.75 h ~ log z Rc T=98K, Y = 772MPa, K Ic = 47MPa.m 1/2 Rc = 200 µm =0.75 h ~ log z Rc 3- Damage…
25
4- Conclusion… MatGenIV, Cargèse, September 2007 Analytical model of fracture of an elastic linear disordered material Out-of-plane roughness =0.4, =0.5 sintered glass beads, sandstone, wood logarithmic roughness glass, steel Length scales >> Process zone size ~ 100 nm 20 m to 200 m
26
4- Conclusion… MatGenIV, Cargèse, September 2007 z c 0 +f(z,t) 0 +Vt (Santucci, Bonamy, Ponson & Måløy, 07 ) In-plane fracture Dynamic phase transition Stable crack K I
27
4- … & work in progress MatGenIV, Cargèse, September 2007 PROCESS ZONE REGIME Out-of-plane roughness =0.8, =0.6 glass wood metallic alloys … Length scales Process zone size A model ? ELASTIC REGIME Algebraic/logarithmic roughness ? « Map » of disorder:
28
Cavity scale? MatGenIV, Cargèse, September 2007 4- … & work in progress Metallic glasses: isotropic fracture surfaces! Coll. G. Ravichandran (Caltech), D. Boivin & JL Pouchou (Onera) Coupled equations: growth of cavities/ line progression Silicate glasses: damage formation at the crack tip Coll. E. Charlaix (Lyon I), M. Ciccotti (Montpellier II)
29
3- Damage… 300 m30 m Zr-based metallic glass (Coll. D. Boivin, J.-L. Pouchou, G. Ravichandran) MatGenIV, Cargèse, September 2007
30
? 3- Damage… MatGenIV, Cargèse, September 2007
31
4- Conclusion… 3 classes of universality ? 1 Linear elastic region =0.4 =0.5 2 Intermediate region: damage = « perturbation » of the front (screening) =0.8 =0.6 3 Cavity scale: isotropic region = =0.5 1 2 3 MatGenIV, Cargèse, September 2007
32
Models: - in-plane roughness (D. Bonamy, S. Santucci & K.J. Målǿy) - how to take damage into account? Evolution of ductility: steel (C. Guerra/S. Chapuilot) Metallic glasses Silicate glasses ( C. Rountree, D. Bonamy) 4- … & Work in progress T UCLA, May 31, 2007
33
NLE zone size 3- Damage… D. Bonamy et al., (06) V (m/s) Rc (nm) Correlation length Velocity (m/s) (nm) and R c decrease with v =R c
34
z x Endommagement en pointe de fissure Ecrantage des interactions entre deux points du front KI0KI0 KI0KI0 3- Endommagement… > 2 =0.75; =0.6; z=1.2
35
3- Endommagement Verres métalliques (Xi et al, PRL 94, 2005) Base-Ce K Ic =10MPa m Base-Mg K Ic =2MPa m
36
Si z > 1 mm ζ ~ 0.4 Si z < 1 mm ζ ~ 0.8 Collaboration avec S. Morel & G. Mourot, Bordeaux I, France Log (Δh) (mm) 10 0 10 -1 10 1 10 -2 10 -1 10 0 log(Δz) (mm) 3- Endommagement
37
3- Des surfaces de rupture anormalement rugueuses: les céramiques de verre Exposant de rugosité indépendant de la microstructure: ζ = 0.40 ± 0.04 Analyse 1D
38
Matériau modèle dont on peut moduler: -la porosité -la taille des billes d 3- Des surfaces de rupture anormalement rugueuses: les céramiques de verre
39
3- Des surfaces de rupture anormalement rugueuses: les céramiques de verre ζ=0.4 ± 0.05 β=0.5 ± 0.05 z=ζ/β=0.8 ±0.05 L. Ponson, H. Auradou et J.P. Hulin, soumis à Phys. Rev. E Les 3 exposants Analyse 2D Forme universelle de la fonction de corrélation 2D +
40
3- Des surfaces de rupture anormalement rugueuses: les céramiques de verre Diamètre des billes: 100 µm Porosité: 5% Analyse 2D
41
= 1 mm 3- Des surfaces de rupture anormalement rugueuses: le mortier à grande échelle Si z > 1 mm ζ ~ 0.4 Si z < 1 mm ζ ~ 0.8 Collaboration S. Morel et G. Mourot, LRBB, Bordeaux
42
Si z > 100 nm ζ ~ 0.4 3- Des surfaces de rupture anormalement rugueuses: le verre à grande échelle = 100 nm Si z < 100 nm ζ ~ 0.8 S. Wiederhorn et al. 05
44
Humid air n-tetradecane
45
l a δ=h 2 -h 1 s v h1h1 h2h2 B A h STM tip C1C1 D C2C2 D1D1 D2D2 wedge
48
Topothesies l z and l x : mortar glass metal Crossover function is also universal 1- Scaling properties …
49
2- Fracture surfaces abnormally rough: glass ceramics ΔzΔz ΔhΔh Distribution of Δh Δz Δh/Δz ζ P( Δh ) ~ Δz -ζ g( Δh/Δz ζ ) Mono-affine ζ = 0.40 ± 0.04 P.Δz ζ
50
Gaussian distribution 2- Fracture surfaces abnormally rough: glass ceramics ΔzΔz ΔhΔh Distribution of Δh Δz Δh/Δz ζ P.Δz ζ
51
f(z) z x f t = K I - K Ic + f z ( ) 2 μ KI0KI0 KI0KI0 3- Towards one scenario for all the materials? For an homogeneous and elastic material: H. Gao and J. Rice, 89 In-plane displacement of the crack front:
52
f(z) z x f t = K I - K Ic + f z ( ) 2 μ KI0KI0 KI0KI0 3- Towards one scenario for all the materials? For an homogeneous and elastic material: H. Gao and J. Rice, 89 Equation of pinning/depinning of an elastic line In-plane displacement of the crack front:
53
(r) Zone endommagée Introduction c min c max Distribution des seuils de rupture
54
exposant angle Alliage métallique z direction du front x direction de propagation Demande française et américaine de brevet (2005) direction de propagation ζ = 0.75 β = 0.6
55
Matériau « modèle »: fritté de verre (L. Ponson, H. Auradou & J.-P. Hulin, 06) - Porosité contrôlée (3 to 25%) - Taille de grains (50 to 200 m) - Joints vitreux - Rupture mixte inter/trans-granulaire - Taille zone de process comparable verre << taille grains 2- Modèles statistiques…
56
Journées de Physique Statistique- 25 janvier 2007 Examen des surfaces de rupture Johnson et Holloway (1968) 0.5 mm
57
Principle of local symmetry: K II =0 2- Statistical models UCLA, May 31, 2007
Similar presentations
© 2018 SlidePlayer.com Inc.
All rights reserved.
Download ppt on coordinate geometry for class 9th Ppt on isobars and isotopes of uranium Ppt on viruses and bacteria images Ppt on c programming algorithms and flowcharts Ppt on our mother earth Ppt on asian continent landmark Research presentation ppt on caterpillar Ppt on trial and error 1997 File type ppt on cyber crime Ppt on natural numbers symbol