Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Array vs. Linked List Array vs. Linked List Pointers & Nodes Pointers & Nodes Singly linked list Singly linked list Doubly linked list Doubly linked.

Similar presentations


Presentation on theme: "1 Array vs. Linked List Array vs. Linked List Pointers & Nodes Pointers & Nodes Singly linked list Singly linked list Doubly linked list Doubly linked."— Presentation transcript:

1 1 Array vs. Linked List Array vs. Linked List Pointers & Nodes Pointers & Nodes Singly linked list Singly linked list Doubly linked list Doubly linked list Circular linked lists Circular linked lists Header (dummy) node Header (dummy) node Implementing ADTs Implementing ADTs Stack Stack Queue Queue CSE 30331 Lecture 12 – Linked Lists …

2 2 Reading Linked Lists Ford: Ch 9

3 3 Array vs. Linked List Arrays (& STL vectors) Direct access by index – O(1) Insertion & deletion requires shifting – O(n) Dynamically resizable only at one end May require copying of all values Pop & push at end – O(1) Unless resizing is involved Linked Lists ( & STL lists) Sequential access – O(n) Insertion & deletion without shifting – O(1) Dynamically resizable anywhere –O(1) Pop & push at either end – O(1)

4 4 Abstraction of a Linked List frontback Singly Linked List Doubly Linked List

5 5 Linked List Nodes Each Node is like a piece of a chain To insert a new link, break the chain at the desired location and simply reconnect at both ends of the new piece.

6 6 Linked List Nodes Removal is like Insertion in reverse.

7 7 Node Composition (singly linked list) An individual Node is composed of two parts a Data field containing the data stored by the node a Pointer field containing the address of the next Node in the list.

8 8 Inserting at the Front of an empty Singly Linked List

9 9 Inserting at the Front of a nonempty Singly Linked List

10 10 Deleting From the Front of a Singly Linked List front // front = NULL Deleting front of a 1-node list

11 11 Deleting From the Front of a Singly Linked List front Deleting front of a multi-node list // front = front->next

12 12 Removing a Target Node front target prevcurr // next

13 13 A stack as a NULL terminated singly linked list

14 14 Node data structure // forward declaration, just to keep the compiler happy template class Stack; template class Node { friend class Stack ; // let Stack access data & next public: Node(T value = T()) : data(value), next(NULL) { } private: T data; Node *next; };

15 15 Stack as a Singly Linked List template class Stack { public: Stack(); ~Stack(); bool empty(); // true or false, status of stack T top(); // return copy of top nodes value void pop(); // remove top node void push(T value); // create new top node with value void clear(); // remove all nodes from stack private: Node *topNode; };

16 16 Stack member functions template Stack ::Stack() : topNode(NULL) { } template Stack ::~Stack() { clear(); // make sure all memory is freed } template bool Stack ::empty() { return (NULL == topNode); }

17 17 Stack member functions template T Stack ::top(){ if (empty()) throw(in top() with Empty Stack); return topNode->data; } template void Stack ::pop() { if (! empty()) { Node *temp = topNode; // point to top node topNode = topNode->next; // point around to next node delete temp; // free node memory }

18 18 Stack member functions template void Stack ::push(T value) { Node *temp = new Node (value); // create new Node temp->next = topNode; // new node points to top Node topNode = temp; // now new node IS top Node } template void Stack ::clear() { while(! empty()) pop(); }

19 19 Stack Tester #include "myStack.h" #include using namespace std; int main () { Stack S; string name; cout << "Enter names ('done' to quit, 'purge' to clear)\n"; cin >> name; // get first name while (name != "done") { if (name == "purge") S.clear(); else S.push(name); cin >> name; // get another name } cout << "Names entered -- NOW reversed --\n"; while (! S.empty()) { cout << S.top() " "; S.pop(); } cout << endl; return 0; }

20 20 Queue as a Null Terminated Singly Linked List Need front and back pointers so we have access to both ends of list

21 21 Node data structure (Queue version ~ same as Stack) // forward declaration, just to keep the compiler happy template class Queue; template class Node { friend class Queue ; // let Queue access data & next public: Node(T value = T()) : data(value), next(NULL) { } private: T data; Node *next; };

22 22 Queue as a Singly Linked List template class Queue { public: Queue(); ~Queue(); bool empty(); // true or false, status of queue T front(); // return copy of first value void pop(); // remove first node void push(T value); // create new last node with value void clear(); // remove all nodes from queue private: Node *first, *last; };

23 23 Queue member functions template Queue ::Queue() : first(NULL), last(NULL) { } template Queue ::~Queue() { // same as Stack clear(); // make sure all memory is freed } template bool Queue ::empty() {// essentially same as Stack return (NULL == first); }

24 24 Queue member functions template T Queue ::front(){ if (empty()) throw(in front() with Empty Queue); return first->data; } template void Queue ::pop() { if (! empty()) { Node *temp = first; // point to first node first = first->next; // point around to next node delete temp; // free node memory }

25 25 Queue member functions template void Queue ::push(T value) { Node *temp = new Node (value); // create new Node if (empty()) first = temp; // new last node is also first node else last->next = temp; // new last node follows old last = temp; // now new node IS last Node } template void Queue ::clear() { while(! empty()) pop(); }

26 26 Doubly Linked Lists Singly linked list only allow easy traversal in one direction (forward) Doubly linked lists allow easy traversal both directions (forward and backward) The list can be linear Having NULL pointers at both ends The list can be circular Having each end point back to the other Usually this is implemented with a header node That contains no data That points to itself when list is empty

27 27 Circular Doubly Linked Lists A Watch Band provides a good Real Life analogue for this Data Structure

28 28 Circular Doubly Linked Lists Implemented on a Computer it might look something like this.

29 29 Empty and Non Empty Doubly Linked List

30 30 Implementing a Circular Doubly Linked List // forward declaration, just to keep the compiler happy template class LinkedList; template class Node { friend class LinkedList ; // let LinkedList access data & next public: Node(T value = T()) : data(value), next(NULL), prev(NULL) { } private: T data; Node *next, *prev; };

31 31 LinkedList (Circular and Doubly Linked) template class LinkedList { public: LinkedList(); ~LinkedList(); int size(); // number of nodes in list T get(int pos); // return copy of value at pos void erase(int pos); // remove first node void insert(T value, int pos); // create new node with value at pos void clear(); // remove all nodes from queue int find(T value); // return position of first node with value private: Node *last, // indicate beginning and end of list *current; // indicates current node int numNodes, // number of nodes in list currentPos; // indicates current position void moveTo(int pos); // moves current to desired Node };

32 32 LinkedList member functions template LinkedList ::LinkedList() : numNodes(0), currentPos(-1) { last = new Node ; last->next = last; last->prev = last; current = last; // point to the header } template LinkedList ::~LinkedList() { clear(); // make sure all Node memory is freed delete last; // free the header Node memory }

33 33 LinkedList member functions template int LinkedList ::size() { return numNodes; } template void LinkedList ::clear() { while(size() > 0) erase(0); // remove all nodes }

34 34 LinkedList member functions template void LinkedList ::moveTo(int pos) { if ((pos < 0)|| (size() <= pos)) throw range_error(LinkedList::moveTo() pos out of range); while (currentPos < pos) // move forward along list { current = current->next; currentPos++; } while (currentPos > pos) // move backward along list { current = current->prev; currentPos--; }

35 35 LinkedList member functions template T LinkedList ::get(int pos) { try { moveTo(pos); // move to indicated position in list } catch (exception &e) { cerr << Error from LinkedList::get()\n; cerr << e.what(); exit 1; } return current->data; // return value of Node }

36 36 LinkedList member functions template int LinkedList ::find(T value) { current = last->next; // point to first Node currentPos = 0; while (current != last) // move forward along list { if (current->data == value) break; current = current->next; currentPos++; } if (current == last) currentPos = -1; return currentPos; }

37 37 Deleting a Node at a Position // unlink the node (*curr) from the list curr->prev->next = curr->next; curr->next->prev = curr->prev; delete curr;

38 38 LinkedList member functions template void LinkedList ::erase(int pos) { try { moveTo(pos); // move to indicated position in list } catch (exception &e) { cerr << Error from LinkedList::get()\n; cerr << e.what(); exit 1; } current->prev->next = current->next; // point around Node forward current->next->prev = current->prev; // point around Node backward delete current; // free Node memory }

39 39 Inserting a Node at a Position // insert newNode before curr newNode->prev = curr->prev; newNode->next = curr; curr->prev->next = newNode; curr->prev = newNode;

40 40 LinkedList member functions template void LinkedList ::insert(T value, int pos) { try { moveTo(pos); // move to indicated position in list } catch (exception &e) { cerr << Error from LinkedList::get()\n; cerr << e.what(); exit 1; } Node *newNode = new Node(value); // make a new Node with value newNode->prev = current->prev; // point back at previous Node newNode->next = current; // have it point to new Node current->prev->next = newNode; // point forward to next Node current->prev = newNode; // have it point to new Node }

41 41 So what is missing? Copy Constructor & Assignment Operator Need a deep copy Traverse source list Copy each node Insert in destination list Comparison Operator (==) Compare list lengths, and if equal … Traverse both lists Compare corresponding nodes

42 42 Copy Constructor template LinkedList ::LinkedList(LinkedList & theList) : numNodes(0), currentPos(-1) { last = new Node ; last->next = last; last->prev = last; current = last; // point to the header int pos(0); // start at dummy node while (pos < theList.size()) // while nodes in theList { this->insert(theList.get(pos),pos)); // copy node and insert pos++; // move forward }

43 43 Assignment Operator (=) template LinkedList & LinkedList ::operator=(LinkedList & theList) { if (this == &theList) return; // same lists, nothing to do LinkedList *newList; int pos(0); // start at dummy node while (pos < theList.size()) // while nodes in theList { newList.insert(theList.get(pos),pos)); // copy node and insert pos++; // move forward } return newList; }

44 44 Comparison (==) template bool LinkedList ::operator==(LinkedList & theList) { if (this == &theList) return true; // same lists, nothing to do if (this->size() != theList.size()) return false; // lists have different number of values bool same(true); // assume the same int pos(0); // start at first node while (same && (pos < size()) // while same and more nodes { if (this->get(pos) != theList.get(pos)) same = false; // nodes differ so lists do, too pos++; // move forward } return same; }

45 45 Comparison (==) (more efficient, without function calls) template bool LinkedList ::operator==(LinkedList & theList) { if (this == &theList) return true; // same lists, nothing to do if (this->numNodes != theList.numNodes) return false; // lists have different number of values bool same(true); // assume the same Node *nodeThis(this->last->next); // start at first node Node *nodeThat(theList.last->next); // start at first node while (same && (nodeThis != last) // while same and more nodes { if (nodeThis->data != nodeThat->data) same = false; // nodes differ so lists do, too nodeThis = nodeThis->next; // move forward nodeThat = nodeThat->next; // move forward } return same; }


Download ppt "1 Array vs. Linked List Array vs. Linked List Pointers & Nodes Pointers & Nodes Singly linked list Singly linked list Doubly linked list Doubly linked."

Similar presentations


Ads by Google