Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tragan Knight and Nathaniel Tidwell Dr. Melanie Sattler, P.E. Dr. Yvette Weatherton, P.E. Roja Haritha Gangupomu.

Similar presentations

Presentation on theme: "Tragan Knight and Nathaniel Tidwell Dr. Melanie Sattler, P.E. Dr. Yvette Weatherton, P.E. Roja Haritha Gangupomu."— Presentation transcript:

1 Tragan Knight and Nathaniel Tidwell Dr. Melanie Sattler, P.E. Dr. Yvette Weatherton, P.E. Roja Haritha Gangupomu

2 Nathaniel Tidwell Completed first year at North Central Texas College Attending University of Texas Arlington as a sophomore Majoring in Mechanical Engineering

3 Tragan Knight Eastfield College University of Texas at Arlington Major: Civil Engineering (Environmental Engineer) Goals: Master (Material in Science) Ph.D.: (Theology) Aspirations: Reevaluate and innovate the recycling process.

4 Objectives Model the effects of a dirty bomb detonation at Cotton Bowl Stadium in Dallas, Texas Use the HotSpot air dispersion model to run simulations Compare different radionuclides, as well as various atmospheric conditions

5 Radiological Dispersion Devices Also known as RDDs, or dirty bombs Use conventional explosives to spread radioactive material over an area Although there is concern that terrorist groups may use dirty bombs, so far none have actually been detonated.

6 Radionuclides Isotopes that undergo radioactive decay Several types of radionuclides are used in medicine and industry We used three different radionuclides in our simulations: 241 Am, 137 Cs, and 60 Co This backscatter gauge, used in industry, contains 137 Cs. 1 1 Nitus Gamma Backscatter Gauge. Digital image. Thermo Fisher Scientific Inc., n.d. Web. 23 July 2012.

7 Radiation Three types of radioactive decay Alpha Helium nucleus (alpha particle) is emitted from an atom Most harmful, but least penetrating Beta Electron or positron (beta particle) is emitted Moderate harm, and moderate penetration Gamma Gamma rays are emitted Least harmful, but highly penetrating

8 Total Effective Dose Equivalent Sum of external and internal effective dose equivalents Unit of measure is the Sievert (Sv) or roentgen equivalent in man (rem) for biological tissue 1 Sv = 100 rems

9 Biological Effects of Radiation EffectDose Blood count changes50 rem Vomiting (threshold)100 rem Mortality (threshold)150 rem LD 50/60 * (with minimal supportive care) 320 – 360 rem LD 50/60 (with supportive medical treatment) 480 – 540 rem 100% mortality (with best available treatment) 800 rem * The LD 50/60 is that dose at which 50%of the exposed population will die within 60 days. 1 "Biological Effects of Ionizing Radiation." Trustees of Princeton University, 30 Apr. 2010. Web. 26 July 2012. 1

10 Air Dispersion Modeling

11 Plume Model

12 HotSpot 2.07.2 Created by National Atmospheric Release Advisory Center (NARAC) A computer program designed to calculate radiation doses Uses the Gaussian Equation Provides numerous amounts of potential radiological dispersal devices scenarios Used for short-term, short-range (up to 10 km) simulations

13 HotSpot 2.07.2 Relatively simple surroundings data Built-in standard terrain information One meteorological condition per run Less sophisticated than other air dispersion models

14 Parameters RadionuclideStability ClassRainfall 241 AmBRain 137 CsDNo Rain 60 CoF Mixture Variables 4 radionuclides * 3 stability classes * 2 rainfall conditions = 24 runs

15 Other Parameters Material-at-Risk100 grams High Explosives100 pounds TNT equivalent Wind Speed4.8 m/s Wind Direction180° (from the south) Rainfall Rate5 mm/hr Terraincity

16 Running Simulations HotSpot is very user-friendly It takes only a couple minutes to input terms and view results

17 Examples of Outputs

18 Results Inputs and Outputs from Hotspot.

19 Results Comparing differences in stability classes with 241 Am BDF

20 Results The figures below compare rainout and dry conditions using 60 Co and stability class B. No Rain Rain

21 Results Comparing each isotope in dry conditions with stability class B (a) 241 Am (b) 137 Cs (c) 60 Co (d) Mixture A DC B

22 Conclusions 60 Co generally had the highest TEDE 137 Cs generally had the lowest TEDE Radiation doses are higher in scenarios with rain Stability Class F had the largest isopleth area of sickness in all scenarios Worst-case scenario is 60 Co, stability class F, in rainy conditions

23 Thank You!

Download ppt "Tragan Knight and Nathaniel Tidwell Dr. Melanie Sattler, P.E. Dr. Yvette Weatherton, P.E. Roja Haritha Gangupomu."

Similar presentations

Ads by Google