Download presentation

Published byAdrian Heffington Modified over 4 years ago

1
**Introduction to Geometry – Postulates and Theorems**

This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized.

2
**Introduction to Geometry – Postulates and Theorems**

This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Definitions – statements that distinguish one term from all other terms Triangle – an enclosed three sided figure Square – an enclosed four sided figure, all sides have equal measure and all angles are right angles

3
**Introduction to Geometry – Postulates and Theorems**

This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Definitions – statements that distinguish one term from all other terms Triangle – an enclosed three sided figure Square – an enclosed four sided figure, all sides have equal measure and all angles are right angles Each definition names the term, defines which set it belongs to ( both are figures ), and states the properties that distinguish it from other terms.

4
**Introduction to Geometry – Postulates and Theorems**

This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Definitions – statements that distinguish one term from all other terms Triangle – an enclosed three sided figure Square – an enclosed four sided figure, all sides have equal measure and all angles are right angles Each definition names the term, defines which set it belongs to ( both are figures ), and states the properties that distinguish it from other terms. Postulates – statements that are generally accepted as true Every line contains at least two points.

5
**Introduction to Geometry – Postulates and Theorems**

This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Definitions – statements that distinguish one term from all other terms Triangle – an enclosed three sided figure Square – an enclosed four sided figure, all sides have equal measure and all angles are right angles Each definition names the term, defines which set it belongs to ( both are figures ), and states the properties that distinguish it from other terms. Postulates – statements that are generally accepted as true Every line contains at least two points. Postulates help us to state simple facts; in this case referring to lines. Postulates help us draw valid conclusions about complex problems. Sometimes they describe relationships between geometric figures.

6
**Introduction to Geometry – Postulates and Theorems**

This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Theorems – statements that must be proved before they are accepted as being true Theorem - If two lines are perpendicular, they form four right angles. To prove this theorem we need to know the definition of perpendicular. Perpendicular Lines – lines that intersect each other at a 90° angle.

7
**Introduction to Geometry – Postulates and Theorems**

This first section introduces you to terms that we will be using throughout the course. I would not go about memorizing these but you must understand how they are used. So I would write out the definition of a postulate or theorem, and then describe in your own words how it is utilized. Theorems – statements that must be proved before they are accepted as being true Theorem - If two lines are perpendicular, they form four right angles. To prove this theorem we need to know the definition of perpendicular. Perpendicular Lines – lines that intersect each other at a 90° angle. To prove theorems you might need an illustration. The illustration helps show how the lines are perpendicular

8
**Definition of perpendicular**

Introduction to Geometry – Postulates and Theorems Proof – a formal process used to demonstrate the truth of a statement To prove something in geometry you need to set up a series of logically related statements that lead to some previous conclusion. They are set up as a table… Statements Reasons Definition of perpendicular Proven theorems, definitions, or postulates

9
**Definition of perpendicular**

Introduction to Geometry – Postulates and Theorems Proof – a formal process used to demonstrate the truth of a statement To prove something in geometry you need to set up a series of logically related statements that lead to some previous conclusion. They are set up as a table… Statements Reasons Definition of perpendicular Proven theorems, definitions, or postulates Direct Proof – shows that a statement is true because a logical chain of steps supports it. Indirect Proof – shows that a statement can not be false, therefore it must be true

10
**Statements Reasons Introduction to Geometry – Postulates and Theorems**

Let’s set up a simple proof so you can see what it looks like. Given : AB is intersecting CD at E AB is perpendicular to CD Prove : angle AEB = angle CED C A B E D Statements Reasons

11
**Statements Reasons Introduction to Geometry – Postulates and Theorems**

Let’s set up a simple proof so you can see what it looks like. Given : AB is intersecting CD at E AB is perpendicular to CD Prove : angle AEB = angle CED C A B E D Statements Reasons Angles AEC, CEB, BED, and AED are all right angles

12
**Statements Reasons Introduction to Geometry – Postulates and Theorems**

Let’s set up a simple proof so you can see what it looks like. Given : AB is intersecting CD at E AB is perpendicular to CD Prove : angle AEB = angle CED C A B E D Statements Reasons Angles AEC, CEB, BED, and AED are all right angles Theorem – if two lines are perpendicular, they form four right angles

13
**Statements Reasons Introduction to Geometry – Postulates and Theorems**

Let’s set up a simple proof so you can see what it looks like. Given : AB is intersecting CD at E AB is perpendicular to CD Prove : angle AEB = angle CED C A B E D Statements Reasons Angles AEC, CEB, BED, and AED are all right angles Theorem – if two lines are perpendicular, they form four right angles Angle AEB = angle CED Definition – the degree measure of a right angle is 90°

Similar presentations

Presentation is loading. Please wait....

OK

3.2 Proof and Perpendicular Lines

3.2 Proof and Perpendicular Lines

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google