Presentation is loading. Please wait.

Presentation is loading. Please wait.

CAP Mission Aircrew Mission Pilot Course CAP Mission Aircrew Mission Pilot Course.

Similar presentations


Presentation on theme: "CAP Mission Aircrew Mission Pilot Course CAP Mission Aircrew Mission Pilot Course."— Presentation transcript:

1 CAP Mission Aircrew Mission Pilot Course CAP Mission Aircrew Mission Pilot Course

2 Introduction Administrative Items

3 Mission Pilot Requirements m Trainee Qualified General Emergency Services (GES) Qualified as Mission Scanner Current and qualified CAP pilot IAW CAPR 60-1, with at least 175 hours PIC including 50 hours cross-country. At least 18 years of age (minimum; should be mature) 101T-MP familiarization and preparatory training Commanders authorization m Qualification 101T-MP requirements and CAPF 91 Complete Basic Communications User Training and Task L-001 Current and qualified CAP pilot IAW CAPR 60-1, with at least 200 hours PIC including 50 hours cross-country. Exercise participation (two separate missions) Unit certification and recommendation

4 CAPR 60-series Review

5 m Primary Responsibility: Pilot the aircraft in a safe and proficient manner, following all CAP and FAA rules and regulations. m Second: Remember that you are a pilot, not a scanner. m In addition to these duties, the pilot must perform all the duties of the observer if no qualified observer is on board. MP Duties & Responsibilities

6 m In addition to the duties of Pilot-in-Command: m Responsible for obtaining complete briefings and for planning sorties m Thoroughly brief the aircrew before flight, including a briefing on their responsibilities during all phases of the upcoming flight m Obtain a proper flight release m Enforce sterile cockpit rules m Utilize CRM techniques and procedures MP Duties & Responsibilities

7 m Fly search patterns as completely and precisely as possible; report any deviations from the prescribed patterns during debriefing. m Monitor the observer and ensure all events, sightings and reports are recorded and reported. m Fill out all forms accurately, completely and legibly. MP Duties & Responsibilities

8 Forms m CAPF 100 m CAPF 101 m CAPF 101Ts m CAPF 104 m CAPF 108

9 Forms 104 and 108 m CAPF 104 Mission Flight Plan / Briefing / Debriefing Form CAPR 60-3 Requirement Completed for each mission sortie Clear and legible m CAPF 108 CAP Payment / Reimbursement Document for Aviation / Automotive / Miscellaneous Expenses CAPR Use current form (Previous editions are obsolete) Completed for each mission File within 30 days after mission completion Complete, accurate and legible

10 CAPF 104 Mission Briefing/Debriefing (Front)

11 CAPF 104 (Reverse)

12 FAA Flight Plan m FAA Form FAA Form (8-82) CLOSE VFR FLIGHT PLAN WITH ________________FSS ON ARRIVAL U. S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION FLIGHT PLAN TIME STARTEDSPECIALIST INITIALS 1. TYPE VFR IFR DVFR 2. AIRCRAFT IDENTIFICATION 3. AIRCRAFT TYPE/ SPECIAL EQUIPMENT 4. TRUE AIRSPEED KTS 8. ROUTE OF FLIGHT PROPOSED (Z)ACTUAL (Z) 5. DEPARTURE POINT 6. DEPARTURE TIME 7. CRUISING ALTITUDE 9. DESTINATION (Name of airport and city) 10. EST. TIME ENROUTE HOURSMINUTES 12. FUEL ON BOARD HOURS MINUTES 13. ALTERNATE AIRPORT(S) 11. REMARKS 14. PILOTS NAME, ADDRESS, & TELEPHONE NUMBER & AIRCRAFT HOME BASE 17. DESTINATION CONTACT / TELEPHONE (OPTIONAL) 15. NUMBER ABOARD 16. COLOR OF AIRCRAFT CIVIL AIRCRAFT PILOTS, FAR Part 91 requires you file an IFR flight plan to operate under instrument flight rules in controlled airspace. Failure to file could result in a civil penalty not to exceed $1,000 for each violation (Section 901 of the Federal Aviation Act of 1958 as amended (FAA USE ONLY)PILOT BRIEFING STOPOVER VNR CPF 4239 N99545, CAP Flight

13 Flight Plans and Forms Summary m Forms are important! m Complete, accurate and legible m Label attachments m You implement the CAP mission m Know the source regulations CAPR 60-1 (flying operations) CAPR 60-3 CAPR 60-4 MOUs

14 Communications (Chapter 4)

15 Throughout these slides, each objective is followed by : The mission specialty rating to which the objective applies (S = Scanner; O = Observer; P = Pilot) m The section in the Aircrew Reference Text where the answer to the objective may be found Objectives

16 m Describe how to use the Audio Panel and FM radio. {O & P; & 4.1.3} m Discuss CAP FM radio reports {O & P; 4.1.6} List the minimum required reports Objectives

17 Using the Audio Panel m On/Off, Volume control m Mic Selector switch and receiver switches m Split mode m Swap mode m Intercom mode

18 Audio Panel Transmitter combinations Intercom modes

19 Using the FM Radio m Main and Guard (squelch is automatic) m Normal settings: MN G1 HI 4 or 6 to scroll through frequencies 5 Scan (if enabled) 2 (increase brightness) and 8 (decrease brightness)

20 Using the FM Radio m Volume controls (Guard is receive only) m Main usually set to 004 (Air-to-Ground – MHz) m Normally G1 (Air-to-Ground) [G2 is Primary – MHz] m If base wants to call you, you will hear them no matter what (Main) frequency youre on Just take MN/GD switch to GD, answer, then back to MN

21 FM Radio Reports m Radio check (initial flight of the day) m Minimum required reports: Take-off time (wheels up) Time entering search area Time exiting search area Landing time (wheels down) m Operations normal (Ops Normal) reports Defined during briefing, usually every one-half hour

22 CAP Aircraft Callsigns m CAP has the FAA authorized callsignCAP Flight m FAA callsigns are stated in group form m CPF 4239 is stated as CAP Flight Forty-Two Thirty-Nine m AIM a.5 and FAA

23 CAP AIRCRAFT CALLSIGNS m CAP aircraft should only use the word Rescue in their callsign when priority handling is critical m CAP Flight Forty-Two Thirty-Nine Rescue m DO NOT abuse this!

24 High Altitude and Terrain Considerations (Chapter 7)

25 OPTIONAL m Review the effects of high altitude on aircraft performance Objectives

26 m Concerning atmospheric pressure: State the pressure at sea level, and describe how to compensate for other-than-sea level pressures when setting the altimeter Discuss the three factors that affect the density of an air mass. Define density altitude, and compute DA for a given situation using a chart and flight calculator m State the phases of flight affected by a decrease in atmospheric pressure, and how aircraft performance is affected. Objectives

27 m Discuss strategies to compensate for high DA during searches. m Discuss mountainous terrain precautions and strategies. Objectives

28 m A barometer is used to register changes in pressure; measured in inches of mercury m Standard sea-level pressure and temperature: inches of mercury 59 degrees F (15 degrees C) m A change of 1000 feet in elevation makes a change of about one inch m To correct for local elevation, set altimeter to latest reading (ATIS/AWOS/ASOS/FSS) or enter field elevation Atmospheric Pressure

29 m Three factors: Pressure Temperature Humidity m Altitude and pressure combined to determine pressure altitude m Add non-standard temperature to get density altitude Density Altitude

30 TAS vs. DA

31 Density Altitude

32 Flight Computer m Circular slide rule Density altitude Nautical to statute miles True airspeed Other stuff

33 m Density altitude and aircraft weight have a tremendous effect on aircraft performance m Both must be accurately calculated, especially for mountain flying missions Aircraft Performance

34 m As altitude increases pressure decreases; this decrease can have a pronounced effect on flight: Engine (hp) and prop are less efficient Take off distance, climb rate, and landing distance effected m Take off distance almost doubles with a 5000 foot elevation increase m Rate of climb slows with higher elevation m Landing distance increases with higher elevation m Higher Humidity, Heat or Height result in reduced aircraft performance Pressure vs. Performance

35 DA & ROC

36 Reduced Performance

37 m Dont fly at high elevation during the hottest part of the day m Carefully calculate DA and weight m Reduce load: Less fuel Crew of three instead of four Less baggage m Remember High to Low, Look out Below (update altimeter setting hourly) m If you fly in the mountains, take the Mountain Fury Course Strategies

38 Flight Near Mountainous Terrain m Crews must be constantly careful that the search never takes them over terrain that rises faster than the airplane can climb. Narrow valleys or canyons that have rising floors must be avoided, unless the aircraft can be flown from the end of higher elevation to the lower end, or the pilot is certain that the aircraft can climb faster than the terrain rises. Careful chart study by the crew prior to flight will help identify this dangerous terrain. m If you fly in the mountains, take the Mountain Fury Course

39 Flight Near Mountainous Terrain

40

41

42 QUESTIONS?

43 Navigation and Position Determination (Chapter 8)

44 m Given Attachment E of the U.S. National SAR Supplement to the International Aeronautical and Maritime SAR Manual, grid a sectional. {O & P; and Attachment 1} m Given coordinates and a sectional, use the Standardized Latitude and Longitude Gird System to draw a search grid. {O & P; 8.11} Objectives (Cont)

45 Sectional Aeronautical Charts m 1 to 500,000 m Medium to slow speed aircraft m Types of Information: Legend, Aeronautical, Topographical

46 Standardized Lat/Long Grid System m This system does not require special numbering m Lat-long of lower right corner defines the grid (latitude first) m Letters are used to define sub-grids W W N N AB C B C D 36/102 AA N W W A B C D 36/102 ADB

47 Search Planning and Coverage (Chapter 9)

48 m In basic terms, discuss how search planners determine the Maximum Area of Probability and then the Probability Area. {P; & 9.2.2} m Given a POD table, discuss the advantages and disadvantages of various search altitudes and speeds over the three major types of terrain. {P; 9.2.3} m Discuss the importance of proper execution of search patterns. {P; 9.2.4} Objectives

49 m Optional – Review POD Example {9.3} Objectives

50 Narrowing the Search m Search Involves Estimating the position of the wreck or survivors Determining the area to be searched Selecting the search techniques to be used m Maximum Possibility Area Circle around the Last Known Position (LKP) The radius is equal to the endurance of the aircraft Correct for wind m Probability Area Where is the aircraft likely to be

51 Search Altitudes & Airspeed m Altitudes Maintain a minimum of 500 feet above the ground, water, or any obstruction within a 1000' radius during daylight hours, and a minimum of 2000' AGL at night (except for takeoff and landing). [Refer to CAPR 60-1 for special restrictions for over- water missions.] For SAR/DR/CD/HLS reconnaissance, the pilot will maintain at least 800 AGL. Pilots may descend below the designated search altitude to attempt to positively identify the target (but never below 500 AGL or within 500 feet of any obstructions within a 1000' radius); once the target has been identified the pilot will return to 800' AGL or higher. m Airspeed No lower than Vx

52 Search Factors m Factors which effect detection Weather; terrain; lighting conditions Sweep Width (W) Track Spacing (S) Coverage Factor (C) Probability of Detection (P) m Determine factors for search area coverage Type and number of aircraft available Search visibility m Probability Of Detection (POD)

53 Determining the Maximum Possibility Area LKP Corrected for wind Wind vector No wind endurance Maximum possibility area Flight level winds: 330/20 Aircraft Speed: 100 Kts Endurance: 2 Hours 200 NM 40NM

54 Probability Area m Where was the last point where RADAR had the aircraft identified? m Is there an ELT? m Was there a flight plan (even if not on file with the FAA)? m Dead reckoning from LKP and heading m Reports of sightings Other aircraft People living along the intended route of flight

55 Narrowing the Probability Area m Flight plan m Weather information m National Track Analysis Program data m Airports along the intended flight track m Aircraft performance m Pilots flying habits m Radar coverage as a limiting factor m Nature of terrain along the flight track m Position reports fuel stops, etc. m Most likely within 5 miles of intended track

56 Search Priorities m Areas of bad weather m Low clouds and poor visibility m Areas where weather was not as forecast m High terrain m Areas not covered by radar m Reports of low flying aircraft m Survival factors m Radio contacts or MAYDAY calls

57 Probability of Detection (POD) m POD expressed as a percent search object was detected m Four interrelated factors used to calculate: Track Spacing Search Visibility Search Altitude Type of Terrain m Cumulative POD calculated using a chart m Effectiveness must also be considered

58 POD Table (back of 104)

59 POD Chart - detail 500 Feet 0.5 nm35%60%75% Feet 0.5 nm40%60%75%80% ,000 Feet 0.5 nm40%65%80%85% OPEN, FLAT TERRAIN SEARCH ALTITUDE (AGL) Track Spacing SEARCH VISIBILITY 1 mi 2 mi 3 mi 4 mi

60 Cumulative POD Chart 5-10% % % % % % % % % %11-20%21-30%31-40%41-50%51-60%61-70%71-80%80+% POD For This Search Previous POD

61 QUESTIONS?

62 Mission Pilot (Chapter 12)

63 Objectives m State MP duties & responsibilities. {P; 12.1} m Discuss safety matters related to CAP activities. {12.2} m Identify where to find the rules on transportation flights. {P; } m Discuss special precautions needed for flying CAP missions at night. {P; } m Discuss special precautions needed for flying CAP missions in IMC. {P; }

64 Objectives m Discuss the special considerations for video imaging missions, and discuss the typical video imaging flight profile. {P; } m Discuss proficiency. {P; } m Discuss security and airspace restrictions. {P; & } m Describe the three phases of an aircraft interception, your actions when intercepted, and discuss visual intercepting/intercepted signals. {P; } m Describe the types of items that should be kept in the aircraft glove box. {P; 12.5}

65 Objectives m Discuss aircraft paperwork, documents and minimum equipment, loading, W&B fuel assumptions and reserve, and pre-start. {P; } m Discuss startup checks, leaning the engine, and taxi. {P; } m State crosswind limitations and discuss takeoff, climb and departure. {P; } m Discuss transit to the search area, in the search area, and departing the search area. {12.5.4} m Discuss approach, descent and landing. {P; }

66 Objectives m Discuss after-landing, shutdown and post- flight. {P; } m Discuss those items you can control to affect POD. {P; 12.6} m State the normal, assumed number of aircrew needed for a mission. {P; 12.7} m Discuss how you must alter normal search patterns if you only have one scanner onboard. {P; } m Discuss special considerations while flying CAP searches. {P; } m Discuss "go/no go" decision-making. {12.7.3}

67 m Primary Responsibility: Pilot the aircraft in a safe and proficient manner, following all CAP and FAA rules and regulations m Second: Remember that you are a pilot, not a scanner m The mission pilot is responsible for incorporating Operational Risk Management and Crew Resource Management principles and practices into each mission. MP Duties & Responsibilities

68 m In addition to these duties, the pilot must perform all the duties of the observer if no qualified observer is on board. m In addition to the duties of Pilot-in-Command : Responsible for obtaining complete briefings and for planning sorties Thoroughly brief the aircrew before flight, including a briefing on their responsibilities during all phases of the upcoming flight Obtain a proper flight release Enforce sterile cockpit rules MP Duties & Responsibilities

69 m Sterile cockpit rules; all unnecessary talk is suspended and collision avoidance becomes the priority of each crewmember. Sterile cockpit rules focus each crewmember on the duties at hand, namely concentrating on looking outside the aircraft for obstacles and other aircraft. The rules will always be used during the taxi, takeoff, departure, approach, and landing phases of flight; but the pilot or observer may declare these rules in effect whenever they are needed to minimize distractions. m Fly search patterns as completely and precisely as possible; report any deviations from the prescribed patterns during debriefing m Monitor the observer and ensure all events, sightings and reports are recorded and reported m Fill out all forms accurately, completely and legibly MP Duties & Responsibilities

70 SAFETY

71 Flying into and taxiing on unfamiliar airports m Small, non-towered, unlighted airports Runways Taxiways Obstacles Services Local NOTAMS

72 m Larger, busy airports Airspace and obstacles Taxiways Local NOTAMS m A/FD or Flight Guide (Airguide Publications, Inc.) m Download airport diagrams (AOPA web site) m Taxiing around a large number of aircraft at mission base Taxi plan Marshallers If it looks too close or dangerous – STOP! Flying into and taxiing on unfamiliar airports

73 AIRPORT RUNWAY SAFETY

74 AIRPORT SIGNS

75 AIRPORT MARKINGS

76 m Use the Discrepancy Log, especially in unfamiliar aircraft m Dont let minor squawks linger: Lights and bulbs Radios and navaids m Keep aircraft windscreen and windows clean SQUAWKS

77 Fuel Management m Maintain a sufficient fuel supply to ensure landing with one hour of fuel remaining (computed at normal POH/AFM cruise fuel consumption). m If it becomes evident the aircraft will not have that amount of fuel at its intended destination, the PIC will divert the aircraft to an airport that will ensure this reserve is met. m Have a plan m Accurate Weight & Balance, accurate fuel levels

78 Fuel Management (con't) m Note your assumptions and brief crew: Power setting Wind direction and speed Leg and total flight distance m Compare assumptions against actual conditions m Modify plan and refuel, if necessary m Check fuel status at least hourly m When in doubt – land and refuel!

79 Unfamiliar aircraft equipment m Audio Panel, FM Radio, DF, GPS – if you dont know it, dont fly it! m Even simple differences can matter: If youve never flown an HSI, now isnt the time to learn it! Sit in the aircraft and get up to speed Get another pilot to tutor you m What does the equipment and gear in the baggage compartment weight? W&B. m Dont try to bluff

80 Unfamiliar terrain and weather m Plan for terrain and weather: Enroute Area youll be operating in m Clothing, equipment and survival gear

81 Trainees & Inexperienced Crew m Trainees: Extra time on briefing, duties & responsibilities When not to interrupt (sterile cockpit) m Inexperienced crew (or not proficient): Extra time on briefing May have to assume some duties Check 101T cards m Flight line marshallers may be cadets or seniors on their first mission Be alert and have your crew stay alert

82 Low and Slow m Often less than 1000 feet AGL m May be less than 90 knots (no less than Vx) Include in your proficiency flying Strictly enforce sterile cockpit rules m May lose radar and communications coverage Climb to report ops normal m Maintain situational awareness If the engine quits now, where do I land

83 Low and Slow (Cont) m Maintain a minimum of 500 feet above the ground, water, or any obstruction within a 1000' radius during daylight hours, and a minimum of 2000' AGL at night (except for takeoff and landing or under ATC control). m For SAR/DR/CD/HLS reconnaissance, the PIC will maintain at least 800 AGL. m Pilots may descend below the designated search altitude to attempt to positively identify the target (but never below 500 AGL); once the target has been identified the pilot will return to 800' AGL or higher. m Maintain airspeed above Vx

84 TYPES OF FLIGHTS

85 TRANSPORTATION FLIGHTS m Always consult CAPR 60-1, Chapter 2 (Authorized Passengers) when you need to know who is authorized to fly as passengers in CAP aircraft and the conditions under which they are authorized to fly m As a general rule, anyone other than CAP or US government employees need special permission to fly in CAP aircraft m All non-CAP members eligible to fly aboard CAP aircraft must execute a CAPF 9, Release (for non-CAP Members), prior to the flight.

86 FAR Exemptions (60-1 Attachment 2) m CAP is under the FARs, but has obtained exemptions in two areas: FAR Part 61 – Reimbursement of Private Pilots FAR Part 91, Subpart F – Large and Turbine Powered Multi-Engine Airplanes

87 Remember to check the credentials of non-CAP passengers (center)

88 QUESTIONS?

89 NIGHT FLIGHT m Typically are transport, route searches and ELT searches m CAPR 60-1 requires pilots to maintain a minimum of 2000' AGL at night (except for takeoff/landing or when under ATC control). During night over-water missions, both front- seat crewmembers must be CAP qualified mission pilots and both will be instrument qualified and current (the right- seat pilot need not be qualified in the specific aircraft). m Must be night current and its preferable to have an experienced crew aboard m Extra attention to the pre-flight and other preparations Weather reports and advisories Dew point spread (fog predictor) m Greatest threat is flying into weather you cant see

90 NIGHT FLIGHT m Before you launch, ask yourself a few questions: m Are you really night proficient, or did you last fly 89 nights ago? m How long has it been since youve done a night cross-country? m How long has it been since youve done a night ELT search? m How long has it been since youve done night approaches? m When was the last time you practiced a night landing without a landing light? m How familiar are you with terrain and obstacles along the route? m Did you include all your flashlights in the weight & balance? m Include night flying (and DF) in your proficiency regimen!

91 ILLUSIONS OF THE NIGHT m Some lead to spatial disorientation while others lead to landing errors m Illusions are the most common (JFK Jr.) m The leans: enter a bank too slowly to stimulate the motion- sensing system of the inner ear Coriolis Graveyard spin or spiral Inversion Elevator False horizon Autokinesis

92 ILLUSIONS OF THE NIGHT m Surface conditions and atmospheric conditions can create illusions of incorrect height above and distance away from the runway m Prevent these illusions by pre-planning and by flying a standard approach to all landings: Runway width Runway and terrain slopes Featureless terrain Atmospheric Ground lighting

93 INSTRUMENT (IFR) FLIGHT m CAP missions are seldom conducted in IMC m Most likely is a transport flight (not to minimums) m Can do a route search, but ground teams are preferable under these circumstances m Can DF in IMC, but dangerous Per CAPR 60-1, IFR flights will not depart unless weather is at or above the landing minimums at the departure airport.

94 INSTRUMENT (IFR) FLIGHT m Other requirements and recommendations: PIC has section XIV, Instrument Proficiency, signed off on CAPF 91 PIC meets FAA instrument proficiency requirements PIC is proficient in the type of CAP aircraft shell be flying For any flight other than a simple transport flight, its highly recommended that another instrument-proficient pilot fly in the right seat Never fly a search in IMC alone Never fly an IMC search if ground teams are available

95 VIDEO IMAGING m An increasing important CAP mission m Real-time and near real-time images are invaluable to emergency response personnel m Primarily: Digital still photos (some 35mm) Video (analog and digital) with or without audio comments Slow Scan video

96 VIDEO IMAGING m Essentials for a successful video imaging sortie: Ensure everyone knows what the target is and what types of images are needed Ensure you know how to find the target, and brief the route and video flight patterns to be used Ensure frequencies are understood and agreed upon Define the duties of the PIC and the photographer; the photographer will actually be in charge during the shoot Ensure video equipment is working and that you have plenty of fresh batteries and film (media) Clean the window, even if you plan to open them for the shoot For Slow Scan, make sure everything is connected properly; make a test transmission before you leave the ground

97 TYPICAL VIDEO IMAGING PROFILE

98 PROFICIENCY m CAPR 60-1 Attachments (C1 & B12) m Practice search patterns, with and without GPS m Practice at night m In-flight emergencies and maneuvers will be conducted in daylight VMC at an altitude high enough to allow recovery from an inadvertent stall/spin entry and complete a recovery no lower than 2000 AGL or the aircraft manufacturers, FAA or CAP approved training syllabi recommended altitude, whichever is higher. m Simulated forced landings will be discontinued prior to descending below 500 AGL (unless you intend to land)

99 Proficiency (60-1)

100 PROFICIENCY m With the GPS, practice: Maintaining a constant track over ground Select/display destinations Determine heading, time and distance to a waypoint Save lat/long coordinates as a User Waypoint Save your present position as a waypoint, call it up & rename Enter and use flight plans Exercise the nearest airport and VOR features Practice navigating with present position (lat/long) displayed m Take someone with you! Good for them and more fun!

101

102 QUESTIONS?

103 SECURITY CONCERNS & AIRSPACE RESTRICTIONS m Heightened security concerns and the potential for flight restrictions are now part of our world m CAPs role in Homeland Defense will require greater attention to aircraft, aircrew and airport security

104 Security Concerns m CAP resources should be considered national security assets m Special security precautions must be taken to protect aircraft and other resources: hangar the aircraft whenever possible. May place small pieces of clear tape (that will break) on fuel caps, the cowling and/or doors to detect tampering. Pay extra attention during pre-flight inspections and look for signs of fuel contamination Be as low-key as possible; dont draw unnecessary attention to yourself or discuss CAP business in public Be aware of your surroundings at all times

105 Airspace Restrictions m FAA may issue Temporary Flight Restrictions (TFRs) at any time. May establish an ADIZ (see AIM Section 6). m Ask for FDC NOTAMS before each flight; if security is heightened, check them before each leg. m Even without heightened security, avoid loitering or circling sensitive areas: Power plants (especially nuclear) Reservoirs and dams Government installations Large stadiums or gatherings of people, air shows m If you need to circle one of these structures for training, coordinate with the facility and ATC first. m Monitor MHz

106 In-flight Interception m Know how to respond (AIM 5-6-2) m An intercept has three phases: Approach Identification Post-intercept m If intercepted you should immediately: Follow the instructions of the intercepting aircraft Notify ATC, if possible Attempt to communicate (121.5 MHz) Squawk 7700 unless told otherwise

107 Phases of Flight Mission Pilot Perspective m Covered in general in Chapter 13 for scanners/observers m Checklist in Attachment 2, Flight Guide m Always follow the aircraft checklists; right-seat should read each item and you acknowledge m First, an often overlooked asset – the glove box: Small laminated sheets for crew and passenger briefings, crosswind chart, PA card (like CD), FM frequencies and callsigns, ELT deactivation stickers, and GPS cheat sheet Small cleaning cloth (like for glasses) to clean instrument faces Pencil/pen/grease pencil Backup flashlight Check periodically and purge non-essential stuff

108 Prior to Startup m Familiarize yourself with the aircraft paperwork: Engine, prop, airframe, and avionics logbooks Can you tell when the oil change is due? Next 100 hour/Annual? When the 24-month instrument certifications are due? m Other checks: Due date on CO monitor and Fire Extinguisher inspection ELT battery due date Last VOR check (within 30 days of instrument flight) m Fill out the flight log; double-check Hobbs & Tach times m Check the squawk sheet and make sure none of the entries make the aircraft unsafe for flight or reduce mission readiness

109 Documents and Minimum Equipment m Certificates and documents: Airworthiness and Registration certificates Operating limitations Passengers credentials m Minimum Operable Equipment (FAR 91 Subpart C): VFR Day, VFR Night, IFR FAR to determine if you can take off with inoperable equipment m Other CAP requirements (CAPR 66-1 & CAPF 71): Review of logbooks, W&B data Restrictive placards Pulselite, Avionics/Control Lock, Fire extinguisher, CO detector, cargo net, chocks and tie-downs, survival kit

110 W&B, Loading and Pre-start m Weight & Balance: Use accurate weights of passengers and all equipment Note all fuel assumptions (fuel burn, winds aloft, etc.) Ensure adequate fuel reserve (one hour at normal cruise) m Loading: Ensure equipment, crew weights and supplies correspond to your W&B assumptions Charts and maps Windows clean (modify for video imaging mission) Check and test special equipment Parking area clear of obstacles m Pre-start Passenger briefing, emergency egress procedure Brief fuel management and taxi plan/diagram Enter settings into GPS

111 Startup m Aircraft checklists: Always use them (habit) and keep them close at hand Seat belts, and shoulder harness at or below 1000 AGL m Startup: Ensure DF, FM radio & Audio Panel properly set up Rotating Beacon ON and signal marshaller Lean the engine after starting (> 3000 DA) Set up radio and navigation instruments

112 Taxi Mishaps m Becoming a bigger problem each year (#1 trend in CAP) m Pilots are: straying from designated taxi routes not allowing adequate clearance and not considering the tail and wings during turns taxiing too fast for conditions and taxiing with obscured visibility distracted by cockpit duties not using other crewmembers to ensure clearance

113 Taxi Mishaps m Strategies: Thorough planning and preparation eliminates distractions Crew assignments for taxi If within ten feet of an obstacle, stop, and then taxi at a pace not to exceed a slow walk until clear Do not follow other taxiing aircraft too closely (e.g., 50 feet behind light aircraft; 100 feet behind small multi-engine and jet aircraft; 500 feet behind helicopters and heavies) Use proper tailwind/headwind/crosswind control inputs Treat taxiing with the seriousness it deserves Sterile cockpit rules

114 Taxi m Collision avoidance! Follow CAPR 60-1 requirements for taxi operations. Read back taxi/hold-short. m Review crew assignments for taxi, takeoff, & departure m Sterile cockpit rules are now in effect m Remind crew that most midair collisions occur: Daylight VFR Within five miles of an airport (especially un-controlled) At or below 3000 AGL m Signal marshaller before taxi, test brakes

115 Takeoff, Climb and Departure m Takeoff: Collision avoidance! Check for landing traffic. Cross-wind limits (POH or 15 knots, whichever is less) High density altitude – lean for full power before takeoff m Climb: Collision avoidance! Lean (burn gas; not valves) Use shallow S-turns and lift wing before turns to check traffic m Departure: Collision avoidance! Keep crew apprised of conflicts. Sterile cockpit rules can be relaxed when clear Organize the cockpit, review assignments, set up for next task Check fuel status and altimeter setting hourly

116 The Search Area m Transit: In none assigned, use odd altitudes during transit to minimize chance for midair collision Cross military training routes perpendicular. If you see one fighter, look for the wingman Double-check settings and review methods to reduce crew fatigue or high altitude effects Update weather, file PIREP, review procedures m Approaching the search area: Review assignments Check navigational instruments against each other Stabilize aircraft at least two miles out Exterior lights on

117 The Search Area m In the search area: Log and report In the Search Area Log deviations from assigned search parameters Hourly updates of altimeter (closest source) and fuel status Limit time spent below 800 AGL (no lower than 500 AGL during daylight; 2000 AGL at night) Airspeed > Vx Monitor yourself and crew for fatigue and high altitude effects m Departing the search area: Log and report Leaving the Search Area; reorganize cockpit Double-check heading and altitude assigned to transit to next search area or return to base Reorganize the cockpit

118 Approach, Decent and Landing m Approach: Get ATIS/AWOS, review airport/airspace diagram, taxi plan Sterile cockpit rules are now in effect Collision avoidance! Lights on within 10 miles of airport. m Decent: Collision avoidance! Shallow S-turns and lift wings before turns Richen mixture as you reduce power m Landing: Read back all clearances and hold-short instructions Defer after-landing check until off the active Remember to fly the plane till you shut off the engine Taxi back per taxi plan, watch for Marshallers At engine shutdown, show Marshaller the keys, install chocks

119 Shutdown and Post-Flight m Shutdown: Fill out logs Enter any discrepancies (be specific and complete) Secure aircraft m Post-flight. If this was the last flight of the day: Install chocks, tie-downs, avionics/control lock, Pitot cover and engine plugs Check Master Switch and Parking Brake OFF Remove trash, personal equipment, and special equipment Lock windows, doors and baggage compartment Inspect aircraft; check oil and refuel Clean the aircraft (at least the windshield and windows) m Sign off any 101T tasks that were accomplished

120 QUESTIONS?

121 How can I improve POD? m Pay attention and ask questions during briefings m Plan thoroughly so you can concentrate on the mission at hand m Hit your numbers! Altitude, airspeed, position m Use the GPS – very accurate, especially with no landmarks m Be mindful of your crew – no unnecessary steep turns; look for less turbulence or cooler air if possible; ensure sufficient breaks; ensure sufficient fluid consumption; watch for the crewmember whos obviously not feeling well but doesnt want to complain. m Give a thorough debriefing and be totally honest m Stay proficient!

122 Flying the Mission m Mechanics of planning and executing search patterns are covered in Chapters 10 and 11 m Number of scanners: Most planning (and tables) assume there are at least two scanners on board, one looking out each side of the aircraft Remember – you (the pilot) are not a scanner! m If there is only one scanner: Will only be scanning out one side, usually the right You must plan and fly so as to keep the right side of the aircraft facing the search area at all times, on each leg Increases the time needed to search a given area Reduces search effectiveness (less double coverage) Parallel track or creeping line patterns not recommended

123 Flying a Search Pattern m Your primary contribution to the success of the mission is to fly assigned search patterns completely and precisely m This must be done while fulfilling the duties of a PIC; primarily see and avoid obstacles and other aircraft m Must consider the possibility of engine trouble or failure at low altitudes; always have an out Low and slow and the engine quits. Where do you land? m Always be honest and forthright with yourself and crew: Not at the right airspeed or altitude when you enter the pattern? Exit and re-enter when youre set up. Made the last turn a tad wide? Redo the leg, if necessary. Scanner complaining that he cant see anything? Slow to something less than 120 knots.

124 To Go or Not to Go? That is the Question m Lets see…..been briefed, planned the sortie, got my releases, preflight is done and the crew is briefed m A mission pilot may accomplish all of this and still not be safe to fly the mission m How can this be?

125 To Go or Not to Go? That is the Question It all comes down to the individual and the circumstances: How long has it been since youve taken off with a 14 knot cross-wind? Have you ever taken off and landed on an icy runway? When did you last fly cross-country at night? When was the last time you flew in actual IMC? m Two primary stupid (mission) pilot traits: Overconfidence (Who? Me?? No!!!) The need to accomplish the mission no matter what

126 To Go or Not to Go? That is the Question m The most effective way to prevent you from becoming the weak link in an accident chain: Be brutally honest about your abilities, given the present (or predicted) circumstances m A mission pilot must have the courage and integrity to decline a mission you dont feel comfortable doing Always remember that others are putting their lives in your hands! m DISCUSS SOME SITUATIONS from the text and from the pilots

127 QUESTIONS?

128 Electronic Search Patterns (Chapter 10)

129 m Discuss the various types of ELTs {P; } m Describe how an ELT can be detected {P; 10.2} m Describe how the aircraft DF works in both the Alarm and DF modes {P; } m Discuss using the DF during a typical ELT search {P; } Response during initial phase, including signal fade Response when getting close Response as you pass over the beacon Objectives

130 m Describe the following ELT search methods: {P; 10.4 – 10.7} Homing Wing null Aural Signal m Discuss signal reflection and interference {P; 10.9} m Describe how to silence an ELT and the legal issues involved. {P; 10.10} Objectives

131 ©2000 Scott E. Lanis131 Emergency Locator Transmitter Direction Finding for Aircrews: use of equipment commonly found in CAP aircraft N98987

132 ©2000 Scott E. Lanis132 Objective: The Elusive ELT m Automatic radio beacon (100 milliwatts) Roughly equal to that of a regular flashlight m Can be heard on a line-of-sight basis. m Remember that the ELT may be attached to an aircraft or vessel in distress! Click Icon to Hear an ELT

133 m Activated by g-force (when armed) Some can be activated by the pilot in the cockpit m Three frequencies: MHz (VHF emergency) 243 MHz (UHF emergency – military guard) MHz (third generation advanced ELT/EPIRB/PLB) m General types: General aviation aircraft Military (beepers or beacons) Marine EPIRB Test station (training practice beacon) Advanced (406) The ELT

134 ELT Antenna

135 Most aircraft have ELTs installed But they dont always survive a crash

136 Most aircraft have ELTs installed But they dont always survive a crash

137 m Most common type is the URT-33/C m Personnel ejecting/parachuting will have a 243 MHz beacon m Some downed pilots may be able to communicate via two-way radio on 243 MHz using a PRC-90 or later military survival radio Beacon mode transmits like an ELT on 243 MHz Military beacons

138 m Personal Locator Beacon (PLB) or Personal Emergency Transmitter (PET): Intended for hikers and other remote wilderness travelers Use a 406 MHz transmitter and a MHz homing signal (at only 25 milliwatts) Many are also equipped with a built-in GPS receiver that provides lat/long coordinates Each PLB must be registered [See discussion of Advanced ELTs] Personal beacons

139 m Emergency Position Indicating Radio Beacon m Similar to an ELT, an EPIRB is used on ships and boats m Mandatory on certain commercial vessels m Some activate automatically and others are manually activated Marine EPIRB

140 m Designed to operate with SARSAT/COSPAS MHz beacons have data burst encoding that identifies each (registered) individual beacon Also produces a MHz homing signal and may transmit GPS coordinates Sends a coded signal that can be used to obtain the owner's name, address and type of aircraft, so AFRCC can call the number to see if the aircraft is really missing (70% resolved) Since geostationary satellites process the signal it will be heard more quickly and allow a much faster response (~ 6 hours). If the unit has a GPS receiver, it can transmit lat/long coordinates to further speed the search. The signal can also penetrate dense cover (e.g., trees). Still very expensive (~ three times as much as a MHz ELT) Advanced ELTs

141 m Training Practice Beacons Includes ones used by CAP m All should be converted from to MHz by now (if it isnt, dont use it) m During practice searches, avoid calling the practice beacon an ELT when communicating over the radio May cause confusion m Always use the term Practice Beacon Practice Beacon

142 m Can test the aircrafts ELT within the first five minutes after each hour m Only allowed up to three sweeps m When was the last time you tested the ELT in your aircraft? m Do you regularly monitor MHz after you land? Ensure your ELT didnt activate This isnt considered a test, by the way, but you can try this excuse if you like Testing an Aircraft ELT

143 m Excessively hard landings (Welcome aboard, Ensign!) m Inadvertent change of switch position m During removal/installation m Malfunction m Non-ELT source on MHz (computers, broadcast stations, even pizza ovens!) m Monsieur Murphy Inadvertent Activation

144 m Approximately 97% of received ELT signals are false alarms For MHz ELTs abut 1 in 1000 are actual emergencies (2 in 100 composite alerts) For 406 MHz ELTs abut 1 in 10 are actual emergencies m Whats the big deal? SARSAT can only monitor 10 ELTs at once Easy to overload the system They block emergency communications on and 243 MHz (guarded by towers, ARTCC, and the military) False Alarms

145

146 QUESTIONS?

147 Detection Timeline

148 m For a regular MHz beacon: Said to be a nautical mile radius (~ 452 square nm) Actually an oval shape with a 50% probability of being 15 nm wide and 7 nm high System is more accurate North to South (latitude) Average six-hour detection/alert m For a 406 MHz beacon its a 1-3 nm radius (~ 12.4 square nm) with 45 – 60 minute detection/alert m For a 406 MHz beacon with GPS its a 0.05 nm radius (within 100 yards) with an average five- minute detection/alert Accuracy of SARSAT/COSPAS

149 m AS AN EMERGENCY! m Its not possible to know whether an ELT signal is a distress signal or a false alarm m Although the statistics are against it, you must act as though it is a distress call m If you take advantage of them, every ELT mission allow you to keep your skills sharp! OK, So How Should I Treat an ELT Mission?

150 m Route or parallel track to pick up the signal m If no SARSAT hits or definitive LKP: 4,000 to 10,000 AGL Large track spacing (start at 60 nm, then do halves) m Once signal is located, DF the signal Locating the ELT Signal

151 Direction Finder (DF) A direction finder compares signal strengths from two antenna patterns to let the user know: – When you are centered on a signal headed directly towards OR away from from the signal source – Which direction to turn when not centered – Similar to an ADF needle, but only points left or right, hence the term left-right homing

152 L-Tronics DF m Normal: Alarm toggle in up position m DF: toggle is down

153 DF Antenna These are mounted on the bottom, but may be on top

154 ©2000 Scott E. Lanis154 Step 1: Acquire the Signal m To hear the signal you can use your L-Tronics receiver or one of your comm radios m To acquire with a comm radio, turn the squelch OFF (pull out the volume knob out or flip the appropriate switch) The static you hear may be annoying, but it will allow you to hear the signal at the earliest possible time Allows for a weak or distant signal to be heard m Proceed at a reasonable altitude to the SARSAT composite hit, or to the point designated by your incident commander

155 ©2000 Scott E. Lanis155 NO SIGNAL SIGNALHEARD! ELT Beginning The Search: Altitude Selection m Higher altitudes allow for reception of the ELT signal at greater distances m ELTs transmit on MHz and MHz, both of which limit reception to line of sight m Terrain will block ELT signals m HIGHER is therefore usually BETTER to acquire a signal m Medium altitude is generally better for searching (after signal heard) 3,000 to 5,000 AGL

156 ©2000 Scott E. Lanis156 Altitude Selection

157 ©2000 Scott E. Lanis157 Step 2: Track (DF) the Signal m There are many different ways to DF an ELT signal: Left-Right DF Homing (L-Tronics DF) Wing Shadow Method Aural Search Metered Search Combinations of the above techniques

158 ©2000 Scott E. Lanis158 Wing Shadowing m By flying the airplane in a circle, at some point the wing will block the ELT signal to the receiver antenna This causes an audible decrease in volume, called a null m Almost any VHF-AM aircraft communications radio may be used with this method

159 ©2000 Scott E. Lanis159 Wing Shadowing: Antennas m To properly use the Wing Shadowing method, you MUST know where the antenna for the radio you are using is installed & located on the aircraft m Communications radio antennas are usually, but not always, located above the wings Can be above the fuselage, in the tail, etc. m L-Tronics Aircraft DF antennas may be above or below the aircraft Below the aircraft is the preferred installation

160 ©2000 Scott E. Lanis160 Communications Antennas Above the Wing N98987 Antennas Above the Wing

161 ©2000 Scott E. Lanis161 DF Antennas Below the Wing N98987 Antennas Below the Wing

162 QUESTIONS?

163 ©2000 Scott E. Lanis163 How To DF by Wing Shadowing m Fly a constant bank angle 360° turn m the audio will null, m or get significantly quieter, m when your wing blocks the antennas reception of the ELT signal N S E W

164 ©2000 Scott E. Lanis164 Wing Shadowing: Signal Blocking For Antennas Above the Wings SIGNAL ELT NULL

165 ©2000 Scott E. Lanis165 Wing Shadowing: Antennas Above the Wing m Turn in a circle until you hear the null (significant decrease in volume) m The ELT is 90º to your LEFT m SUBTRACT 90º from your heading N S E W ELT

166 ©2000 Scott E. Lanis166 Wing Shadowing: Signal Blocking For Antennas Below the Wings SIGNAL ELT NULL

167 ©2000 Scott E. Lanis167 Wing Shadowing: Antennas Below the Wing m Turn in a circle until you hear the null (significant decrease in volume) m The ELT is 90º to your RIGHT: ADD 90º to your heading N S E W ELT

168 ©2000 Scott E. Lanis168 Aural (Hearing) Search Method m This is based on the assumption that the area of equal beacon signal strength is circular: do NOT adjust volume during this search; you will need it to determine equal levels of signal m Begin by plotting your position as soon as you receive the ELT signal m Fly that course for a short distance, then turn 90º left or right and proceed until the signal fades m Turn around (180º) and mark where the signal fades on the other side of the circle m Plot chord lines similar to that of the diagram m Bisect the chord lines at a perpendicular m Plot a course to the location where the perpendicular lines intersect: this should be the location of the target!

169 ©2000 Scott E. Lanis169 Aural Search Equal signal strength circle: barely audible signal in aircraft receiver at search altitude chord 1 chord 2 chord 3 ELT commence low altitude pattern descending SIGNAL FADES SIGNAL HEARD SIGNAL HEARD SIGNAL HEARD SIGNAL FADES

170 ©2000 Scott E. Lanis170 Metered Search (Build & Fade) Method m This search requires a signal strength meter (like that on the L-Tronics DF units-if the DF portion of the unit is inoperative you can still use this type of search as long as RECeive is OK. m Note your signal strength when beginning the search. m Fly a straight line until the signal gets lower, then increases to your original level. m Turn 180º and return to the lowest level of signal, then turn 90º left or right. m You should now be headed directly towards or away from the transmitter. m If the signal increases in strength, you are headed directly for the ELT. m If the signal decreases in strength, turn 180º

171 ©2000 Scott E. Lanis171 FADE MAXIMUM SIGNAL MAXIMUM SIGNAL THEN DROP FIRST SIGNAL ELT Metered Search

172 ©2000 Scott E. Lanis172 Left-Right DF Homing m Most CAP corporate aircraft have L-Tronics LA-Series Left-Right Homing DF units m These units operate virtually the same, but there are two major varieties: Single Meter Models Dual Meter Models

173 ©2000 Scott E. Lanis173 L-Tronics DF Types m Single Meter Model m Dual Meter Model L-Tronics ALARM OFF AUX SENS VOL VHF DF DF STRENGTH L-Tronics ALARM OFF SENS VOL VHF-DF AUX DF REC

174 ©2000 Scott E. Lanis174 Frequency Switch m Selects frequency to be used m Use MHz for actual ELTs/EPIRBs m MHz may also be used for all actual electronic searches m Use MHz for training m Refer to owners manual for use of the AUX position L-Tronics ALARM OFF SENS VOL VHF-DF AUX DF REC

175 ©2000 Scott E. Lanis175 Mode Switch m Only Single-meter units have this switch Dual-meter units use two displays, so both REC and DF operate continuously and simultaneously m REC is short for RECeive mode REC makes the units dial work as a strength meter m DF is short for Direction Find DF gives left-right homing to the ELT/EPIRB signal m ALARM is for NON-MISSION flights only Use only during normal flying to alert the presence of an ELT or EPIRB L-Tronics ALARM OFF SENS VOL VHF-DF AUX DF REC

176 ©2000 Scott E. Lanis176 Volume & Sensitivity m Volume controls the audio level to the speaker or headsets m Sensitivity controls the amount of signal that enters into the DF unit It is critical that the proper amount of signal enters the DF: half- scale, or the middle, is an optimum starting place m As the signal gets stronger, reduce SENSITIVITY, not volume The DF will be unreliable as too much signal is received, so you must cut out part of it by reducing the sensitivity More than three-quarters scale is too much L-Tronics ALARM OFF AUX SENS VOL VHF DF DF STRENGTH

177 ©2000 Scott E. Lanis177 DF SETTINGS FOR SINGLE METER MODELS m MISSIONS Select (or for training missions) Select DF Mode Turn Sensitivity to Maximum (Full Clockwise) Turn Volume to About Mid-Scale DF Needle Will Move Slightly Left and Right m NON-MISSION FLIGHTS Select Select Alarm Mode Turn Sensitivity To Maximum

178 ©2000 Scott E. Lanis178 DF SETTINGS FOR DUAL METER MODELS m MISSIONS Select (or for training missions) Ensure Alarm Toggle Off Turn Sensitivity to Maximum (Full Clockwise) Turn Volume to About Mid-Scale DF Should Stay About Centered Strength Meter Will Move Up-Scale to Right m NON-MISSION FLIGHTS Select Turn Alarm Toggle On Turn Sensitivity To Maximum

179 ©2000 Scott E. Lanis179 PRE-FLIGHT FUNCTIONAL CHECK m Just as you pre-flight the rest of the aircraft, you should preflight your DF when going on an ELT electronic search mission m These procedures are covered in the Mission Aircrew Reference Text.

180 QUESTIONS?

181 ©2000 Scott E. Lanis181 SIX STEPS m Use these 6 steps for locating ELTs and EPIRBs with L-Tronics LA- series airborne DF equipment m Use the full procedure every time for the best results RECeive HALF DF TURN CHECK SHOOT m Each of these steps will be described in detail in the slides to follow

182 ©2000 Scott E. Lanis182 Step 1: RECeive m Once you have started to receive the ELT or EPIRB signal on the proper frequency m If you have a single-meter unit, turn the mode selector to RECeive and turn the volume to a comfortable level m If you have a dual meter unit, refer to the STRENGTH window (no need to change modes)

183 RECeive Mode/STRENGTH Window m In receive mode or in the strength window, the unit measures signal strength Needle to the left means low; to the right means high m Values are relative depending on the sensitivity you have selected m You may still be able to use the strength meter even if the DF is not functioning perfectly It is possible to locate an ELT using only the Receive Mode Utilize Aural Search/Metered Search methods to accomplish If the unit isnt completely operable, try wing shadowing using one of the aircrafts communications radios and use the DF units strength meter as a backup using the aural/metered methods

184 ©2000 Scott E. Lanis184 Step 2: HALF m Now that the unit is in RECeive mode and you have a good signal, turn the Sensitivity Knob to HALF SCALE This is in the center of the window m If you are flying with a dual-meter unit, turn the Sensitivity Knob so the needle reads HALF SCALE in the STRENGTH window m A half-scale strength reading will prevent too much signal (over sense) from entering the unit and will provide you with a good starting point m It is also the optimum for the DF homing antennas

185 ©2000 Scott E. Lanis185 Step 3: DF m For single-meter units, turn the mode selector knob to DF m In DF mode, you can think of the needle as always pointing D irect to the F lipping target. m For dual-meter models, simply refer to the DF window (no need to change modes)

186 DF Antenna m The aircraft DF unit has a 2 or 3 element antenna Commonly, we might call this two or three antennas It just means there are two or three rods! m This antenna setup is directional One element actually receives the signal The other elements (rods) reflect the signal away from the first rod N98987 Antenna Elements

187 ©2000 Scott E. Lanis187 Antenna Reception Pattern m When viewed from the bottom, an antenna setup like the one pictured on the previous slide produces a reception pattern like the one shown here This pattern is called carotid, which means heart-shaped m The pattern is the same even if the antennas are mounted above the wing Element 123

188 Direction Finding Mode/Window m The DF mode rapidly alternates the receiving and reflecting antenna elements It chooses one element as the receiver and the other two as the reflectors, then switches to the other set m This produces a carotid pattern each time the unit switches one is shown in blue, the other in yellow m By comparing the two patterns, the unit will determine when they are equal m When theyre equal, the needle centers! m When the needle is centered, the target is either directly ahead or behind you!

189 ©2000 Scott E. Lanis189 Step 4: TURN m Turn at least one FULL circle, noting where the DF needle centers m Under ideal conditions, the needle will center twice When facing directly at the source of the signal When facing 180º away from the target m You will solve this problem (called ambiguity) in the next step

190 DF CENTERS Alternating Antenna Patterns Alternating Antenna Patterns WHEN THE PATTERNS ARE EQUAL, THE DF NEEDLE CENTERS! ELT (Possibility 1) ELT (Possibility 2)

191 ©2000 Scott E. Lanis191 Step 5: CHECK m Use T urn to T ell m Remembering that in DF mode the needle always points D irect to the F lipping target m When you have the needle centered, turn left or right If you turn left and the needle goes left, the ELT is 180º from your present heading If you turn left and the needle turns right, the ELT is dead ahead

192 AMBIGUITY ELT (Possibility 1) ELT (Possibility 2) m When Needle Centers ELT is Directly Ahead or Behind m This situation is called ambiguity m To Solve ambiguity: m Use Turn to Tell Make a turn left or right The needle always points D irect to the F lipping Target (DF!)

193 DF NEEDLE ELT m Compare the YELLOW (LEFT) and the BLUE (RIGHT) antenna patterns m In this case, the LEFT pattern is stronger than the RIGHT m In DF mode, the needle would then point LEFT The needle always points D irect to the F lipping Target!

194 SOLVING AMBIGUITY m Actual ELT position is unknown to user m Make a small turn left or right As a teaching reminder, Use a TURN to TELL ELT (Possibility 1) ELT (Possibility 2)

195 SOLVING AMBIGUITY m Actual ELT position is unknown to user m Make a small turn left or right As a teaching reminder, Use a TURN to TELL m Example: TURN LEFT needle goes left ELT (Possibility 1) ELT (Possibility 2)

196 SOLVING AMBIGUITY ELT (Possibility 2) m Actual ELT position is unknown to user m Make a small turn left or right As a teaching reminder, Use a TURN to TELL m Example: TURN LEFT If needle goes left ELT is to your left (behind you) ELT (Possibility 2)

197 SOLVING AMBIGUITY m If you turn Left and the needle moves Right m The ELT is in Front of you! ELT (Possibility 1) ELT (Possibility 2)

198 SOLVING AMBIGUITY ELT (Possibility 1) ELT (Possibility 2) m If you turn Left and the needle moves Right m The ELT is in Front of you! m Example: Turn left Needle goes right

199 SOLVING AMBIGUITY ELT (Possibility 1) m Solution: If you turn Left and the needle moves Right The ELT is in Front of you!

200 ©2000 Scott E. Lanis200 Step 6: SHOOT m Use your DG to determine a bearing to the target & follow it m You may need to fly through a zone of signal dropout m Be watchful for signs of signal passage If you get signal passage, consider using the pinpointing the target techniques listed in this presentation m Frequently repeat the full six steps to ensure you are heading in the right direction and that you didnt inadvertently over fly the ELT N S E W

201 How A DF Unit Works: Summary m Two Main Modes of Operation RECeive DF m RECeive Mode is a Strength Meter Left is low, right is high m DF Mode Centers on Signal Always points to the signal Use a T urn to T ell when solving ambiguity m Aircraft and ground units work the same way

202 QUESTIONS?

203 ©2000 Scott E. Lanis203 Reflections m Reflections of an ELT signal work just like a flashlight off of a mirror m Any flat, hard, or wet object can cause signal reflections Mountains, especially cliff faces Hangars and other metal structures Wet grass or snow Large bodies of water or ice m Power lines can also have a large effect on a low-powered signal such as an ELT

204 ©2000 Scott E. Lanis204 Beating Reflections m Check your sensitivity at half-scale or lower But ensure that its high enough to receive adequate signal m Reflections will generally be weaker than the most direct path to the target m Following reflections will generally take your closer to the target m If sensitivity is set to minimum, try DFing on a different frequency For example, if you are trying to locate an actual ELT on MHz, try locating it on or MHz when you get close m When all else fails, fly somewhere else to get a good DF bearing- or try that at the first sign of problems!

205 ©2000 Scott E. Lanis205 Carrier-Only Signals You dont always need to hear the ELT or EPIRB to find it – A carrier-only signal may be broadcasting with no audible sweep This is especially true with low or old batteries, damaged ELTs, or spurious transmissions You can identify a carrier-only signal by DEFLECTION Good needle deflection generally indicates a signal that is strong enough to DF Compare your deflection to another frequency – If you are using MHz, try it on MHz If deflection is the same in both frequencies, you DONT have a signal, just random noise If deflection is different, keep at it! You have the signal. If a signal is only received on 243 MHz, it may be a malfunctioning antenna (e.g., an FAA tower). If you DF to the location (particularly on or near an airport) and you keep ending up at an antenna, investigate. Find out who owns the antenna and its purpose. Inform the IC and let the controlling agency troubleshoot the problem.

206 ©2000 Scott E. Lanis206 Vertical Reflections & Signal Dropout m The transmission pattern (similar to the reception pattern of the DF antennas, only for transmission) of an ELT is not a perfect circle or sphere m It has lobes, or, stronger and weaker points m This is accentuated when the ELT is transmitting from a location above the surrounding ground m When you get a good DF heading and the signal fades or drops out completely you may just be outside of one of the signal lobes m When you reacquire the signal, it should be stronger than when you lost it

207 ©2000 Scott E. Lanis207 Signal Dropout NO SIGNAL SIGNALHEARD m If you encounter a signal dropout, continue to fly on your last good DF heading m You should reacquire the signal in a few minutes Actual time will depend upon your distance to the target m If you are unable to reacquire, return to where you last heard the signal and re-DF

208 ©2000 Scott E. Lanis208 Signal Strength m The rate of change in signal strength increases as you get closer to the transmitter, and RECeive mode or the STRENGTH window measures signal strength m This is due to Maxwells inverse square law: When you double the distance from an object, the energy it you receive from it is 1/4 of what you originally received, or the inverse square: 1/(2 2 ) = 1/4 – After Scottish Physicist James Clerk Maxwell, m You will therefore need to turn down the sensitivity to keep the unit at half scale in the RECeive mode or STRENGTH window much more often as you get close to the source of the signal This should let you know that youre getting close

209 ©2000 Scott E. Lanis209 Signal Strength Rate of Change SENSITIVITY KNOB DEACREASES EXPONENTIALLY AS DISTANCE DECREASES

210 ©2000 Scott E. Lanis210 Cone of Confusion Cone of Confusion m Antennas receive best when the pole is perpendicular to the signal m When you approach the directly overhead position on an ELT, your DF will become unreliable It may swing left and right It may center regardless of your heading m You should practice to see what this station passage reading looks like It is similar to crossing a VOR

211 ©2000 Scott E. Lanis211 Reception in the Cone of Silence antenna signal GOOD POOR m You may also get a significant drop in ELT signal since the antennas dont receive well directly off of their tips m Although called a cone of silence, you will probably only see & hear a large decrease in signal instead of complete silence

212 ©2000 Scott E. Lanis212 Pinpointing the ELT m If you get a station passage indication, make an approximate 180 degree turn and DF back to the target m Repeat this process using different approach angles each time, remembering that your path may be curved due to wind (like uncorrected NDB holding) m The point where station passage is received several times should be the location of the target 1 2 3

213 ©2000 Scott E. Lanis213 Pinpointing the ELT m After you think you have the target located make a low pass over the suspected location and visually scan if signal strength decreases significantly or drops out, climb back and try again this is not the target: sometimes false targets will appear due to reflections or other interference m If you hear the ELT at low altitude, you probably have the right place a low pass down a runway might be a good idea if you suspect a particular airport

214 QUESTIONS?

215 ©2000 Scott E. Lanis215 After Locating The ELT m After location, coordinate with ground teams to bring them on-scene m Use radio communication and relay GPS coordinates m Pick up the ground team at a predetermined location and lead them to the target m Alternately, coordinate a pick up point on the radio m Practice your air-to-ground coordination skills often try it both with and without radio communication m Air-to-ground is CAPs best unique ES skill!

216 m Many times the ELT is located at an airfield where it is easier for you to land and locate the ELT than it is to get a ground team to the scene m You can use a hand-held radio or hand-held DF unit m The most commonly used in CAP is the Little L-Per m You did remember to put one of these (with charged batteries) in the aircraft before you left, didnt you? DF upon Landing

217 m Six Steps Receive Half DF Center Turn Shoot Little L-Per

218 m You land at an airport with multiple hangars and each hangar is full of aircraft m This can make it difficult to find the ELT m Two methods can help: Signal-offset Using a hand-held radio without its antenna m If the suspect aircraft has an external DF antenna and you cant get inside to turn the ELT off, try placing an aluminum foil sleeve over the antenna to see if the signal strength decreases significantly OK, which of these planes is it in?

219 m Signal-offset: reflected signals are generally weaker so by tuning your radio further away from the primary frequency you can isolate the signal: Assume ELT transmitting on 121.5; set to As you home in set in (you may even work up to 121.7) As you get further away from the area where the signal will break through the squelch becomes smaller and smaller (you can even turn up the squelch to get further isolation) OK, which of these planes is it in?

220 m Using a hand-held radio without its antenna: Once youve narrowed the suspects down to one or two aircraft (usually side-by-side), remove the radios antenna and hold it next to one of the ELT antennas Turn the volume down until you just hear the signal Dont key the radios transmitter with the antenna removed! Move to the other aircrafts ELT antenna If the signal is stronger you probably have it; if weaker, its probably the other aircraft May also put an aluminum foil sleeve over the antenna Can also combine this with the signal-offset method OK, which of these planes is it in?

221 m ELTs are usually located in or near the rear of the aircraft. Also look for remote switches. Single-engine Cessna: right side of the upper baggage area immediately aft of the baggage door Multi-engine Cessna: left side of the fuselage just forward of the horizontal stabilizer. Accessed through a small push-plate on the side of the fuselage. Single- and multi-engine Piper: in the aft fuselage. Accessed through a small access plate on the right side of the fuselage. Single- and multi-engine Bonanza: in the aft fuselage. Accessed through a small access plate on the right side of the fuselage. Large piston twins (e.g., King Air) and small jets: if installed its probably in the rear section. No visible antenna. May have a small round push-plate that lets you manipulate the ELT switch. OK, where is the thing?

222 m The preferred method is to have the owner (or someone designated by the owner) turn it off and disconnect the battery m Second best is to just turn it off The owner may take the switch to Off and then back to Armed If this is done, stick around and monitor to ensure it doesnt go off again m If you cant find the owner, you may have to build a foil tent (refer to CAPP-2) Silencing the ELT

223 m Foil Tent m 1 x 5 m Encloses antenna m Flaps at least 18 beyond antenna on fuselage m Securely taped (masking tape preferred)

224 m Ensure that the owner is notified that the ELT was disabled m If you cant get a phone number, you can place a note on the aircraft (not the window) Silencing the ELT

225 m Per CAPR 60-1 Chapter 1, CAP members will not enter private property and should not do anything that could cause harm or damage to the distress beacon or aircraft/boat m Entry to the ELT should be made by the owner or operator or law enforcement m A transmitting ELT is under the legal authority of the FCC, and federal law requires that it be deactivated ASAP (a crashed aircraft is under the authority of the NTSB) Legal Issues

226 m CAP members do not have the authority to trespass onto private property, either to gain access to the aircraft or to enter the aircraft to gain access to the ELT m Besides the owner/operator, some owners give FBO personnel permission to enter their aircraft Legal Issues

227 m While entry upon private property may be justified if such an act is for the purpose of saving life, every effort should be made to obtain the controlling agency's and/or the property owner's consent m If you need entry onto private property in order to search for an ELT, law enforcement authorities such as local police, the county sheriff's office or game wardens may be contacted for assistance. Legal Issues

228 m Normally, local law enforcement officials are happy to assist you; if they are not familiar with CAP and your responsibilities, a simple explanation often suffices m If this doesn't work, try calling AFRCC and have them explain the situation Legal Issues

229 m The most important aspect is the manner in which you approach the matter m The local civil authorities are in charge, but if the AFRCC tasks you to search, you go search and offer assistance to the civil authorities when the opportunity presents itself m If they tell you go home, then phone the IC and/or AFRCC and close the mission Legal Issues

230 ©2000 Scott E. Lanis230 QUESTIONS? Good Hunting!

231 Visual Search Patterns and Procedures (Chapter 11)

232 m Plan and describe how to fly: Route (track crawl) search. {P; 11.2} Parallel track (sweep) search. {P; 11.3} Creeping line search. {P; 11.4} Point-based (expanding square or sector) search. {P; 11.5 & 11.6} m Discuss how to plan and fly a basic contour search. {P; 11.7} Objectives

233 m Hey! Wait a minute. This is stupid. m Do my headings, waypoints, lat/long coordinates, and distances look sensible m Perform: After planning When you start your pattern Periodically thereafter The Stupid Check

234 m The following examples and worksheets are covered to aid in pre-planning a search pattern m Designed for non-moving map GPS, but include all the information you need to set up the GX55 m Advantages of pre-planning: Sets the details of the sortie in your mind Makes entering data (correctly) into your GPS easier Allows pilot and observer to concentrate on their primary task by minimizing navaid setup time and reducing confusion Examples

235 m One minute latitude = nm Fly one minute north or south, cover one nautical mile (a 1-nm leg width) m One minute longitude = anywhere from to nm in the continental U.S. Means youll have to fly anywhere from 1.1 – 1.4 minutes of longitude (east or west) to cover one nautical mile Not hard to do, but for training we will use one minute = one mile, even though well be flying less than 1-nm leg widths To get the relationship in your area, go to Latitude, Longitude and Distance (and the GPS)

236 Route search pattern Track of missing aircraft 1/2 S Track of search aircraft

237 m Assume were searching for an aircraft along Highway 46, between Columbus and Greensburg: Draw the route on the worksheet Include significant turns in the highway and other identifiers such as towns, airports and major intersections Search two miles either side of the highway Route search example

238 Route search worksheet example

239 Parallel Track search pattern

240 m Assume were searching STL #104-D for a missing aircraft: Quarter-grid, 7.5' x 7.5' Enter the northeast corner One nm track spacing North/South legs No aircraft assigned to adjacent grids Grid search example

241 Grid search worksheet example m GX55 Data m Type Grid & Sectional: US, STL m Pattern: Parallel Line m Grid: 104D2 m Spacing: 1 nm m Direction of Travel: N/S

242 Creeping Line search pattern sssss Direction of Search

243 m Assume were searching for an aircraft along Highway 31: Draw the route on the worksheet Start at the intersection of Hwys 31/9 (southeast of Columbus) Stop at the intersection of Hwys 31/50 (east of Seymour) Search three miles either side of Hwy 31 1-nm track spacing Creeping Line search example

244 Creeping Line search worksheet example

245 m Assume were searching for an aircraft along the extended runway centerline of BMG runway 06: Draw the route on the worksheet Search 10 nm beyond the end of runway 06 (southwest) Search three miles either side of the extended centerline 1-nm track spacing Creeping Line search example (CDI method)

246 Creeping Line search worksheet example (CDI) m GX55 Data m Type Grid & Sectional: US, STL m Pattern: Creeping Line m Starting Waypoint: BMG m Spacing: 1 nm m Direction of Travel: 060º m Leg Length: 3 nm m Start Side: Right

247 Expanding Square search pattern (second pass rotated 45°) 4SS 2S 3S5S 4S 2S 3S 5S

248 m Assume were searching for a missing ultra-light: Draw the route on the worksheet Center is a 483 AGL tower approximately 8 nm west of Seymour Use cardinal headings, starting to the north Expanding Square search example

249 Expanding Square search worksheet example m GX55 Data m Type Grid & Sectional: US, STL m Pattern: Expanding Square m Starting Waypoint: N 38º 59´ W 86º 10´ m Spacing: 1 nm m Direction of Travel: 000º

250 Sector search pattern Sector search is easier to fly than expanding square The pattern provides concentrated coverage near the center of the area This pattern is used when an electronic search has led the crew to a general area to find the exact location visually The pattern and headings are planned in advance S max S mean

251 Contour search pattern This is a difficult and dangerous pattern to fly. Requires special training such as the Mountain Flying course.

252 QUESTIONS?

253 Step Through a Typical Mission (Chapter 13)

254 m Discuss the items you should check before leaving on a mission: {P; 13.1} Personal and aircraft items CAPF 71 State the flight time and crew duty limitations (per the current CAPR 60-1) State the three unique entries made by a CAP pilot on a FAA Flight Plan and where they go on the flight plan IMSAFE and flight release Preflight & loading Departure m Discuss the approach and your actions upon arrival at mission base, including the general briefing. {P; 13.2 & 13.4} Objectives

255 m Discuss the six steps of ORM and the four principles involved. {P; 13.3} m Discuss the aircrew briefing. {P; 13.5} m Describe the information contained in and how to fill out the front of the CAPF 104. {P; 13.6} m Discuss the items checked and actions taken before leaving on a sortie: {P; 13.7} Release and preparation Preflight and Departure State when the sterile cockpit rules starts and ends m Discuss duties during the sortie, including: {P; 13.8} Preparations prior to entering the search area Required radio reports State when the sterile cockpit rules starts and ends Objectives

256 m Discuss your actions upon arrival back at mission base. {P; 13.9} m Describe the information contained in and how to fill out the back of the CAPF 104. {P; 13.10} m Discuss the aircrew debriefing. {P; 13.11} m Discuss your actions upon arrival back home, including: {P; 13.12} What to do with the aircraft What to do if you observe signs of post-traumatic stress When the mission is officially over for you and your crew Objectives

257 Whats the Rush? m Why do we go to so much trouble to train mission aircrew members and encourage members to spend the time it takes to stay proficient? m Time is such a critical factor in missing person or aircraft crash searches m Treat every minute after you been alerted as critical to the survival chances of the victims

258 Survival Rates m Of the 29% who survive a crash, 60% will be injured: 81% will die if not located within 24 hours 94% will die if not located within 48 hours m Of those 40% uninjured in the crash: 50% will die if not located within 72 hours Survival chances diminish rapidly after 72 hours

259 Response Times m Average time from the aircraft being reported missing to AFRCC notification: 15.6 hours if no flight plan was filed 3.9 hours if a VFR flight plan was filed 1.1 hours if an IFR flight plan was filed m Average time from the aircraft being reported missing (LKP) to CAP locating and recovering: 62.6 hours if no flight plan was filed 18.2 hours if a VFR flight plan was filed 11.5 hours if an IFR flight plan was filed

260 Whats the Rush? m What do these statistics tell us? We must take each mission seriously! Strive to do everything better, smarter and faster! m Training, practice and pre-planning help us accomplish these goals m Also tells us, as pilots, to always file a flight plan

261 Leaving Home Base m Proper uniforms per CAPM 39-1 m Required credentials m Current charts for the entire trip (gridded, if you have them) m Personal supplies and money m Equipment such as cell phone and flashlights (including spare batteries) m Charts and maps NOTE: Mission Pilots may skip the portions that were covered in Chapter 12, Phases of Flight

262 Leaving Home Base m Check the Weight and balance, CO monitor & Fire Extinguisher status, fuel reserve and management plan, Discrepancy Log m Tie-downs, chocks, Pitot cover and engine plugs m Equipment such as fuel tester, survival kit, binoculars, sick sacks, and cleaning supplies

263 Leaving Home Base m Obtain briefing and file FAA Flight Plan m Complete Inbound 104 and get released by FRO

264 Leaving Home Base IMSAFE m I llness m M edication m S tress m A lcohol m F atigue m E motion

265 FRO Checklist (60-1)

266 Pre-flight begins even before you even get to the aircraft

267 Preflight m Check the aircraft: Pre-flight (e.g., CAPF 71, CAP Aircraft Inspection Checklist ) m Check the date and starting Tach & Hobbs times to ensure you won't exceed : mid-cycle oil change (40-60 hours, not to exceed four months) 100-hour/Annual 24-month Transponder inspection, Pitot-Static system inspection, Altimeter calibration, & ELT inspection/Battery replacement date 30-day VOR check for IFR flight m Check the AD compliance list m Fill in the CAP flight log

268 Preflight m Check the Discrepancy Log; ensure no discrepancy makes the aircraft unsafe for flight or reduces your ability to accomplish the mission m Verify any outstanding discrepancies during your aircraft preflight. If new discrepancies are discovered, log them and ensure the aircraft is still airworthy and mission ready m During loading, ensure that all supplies and equipment correspond to what you used in your Weight & Balance m Windshield and windows are clean, and that the chocks, tie- downs, and Pitot tube covers/engine plugs are stowed m Check and test special equipment

269 Preflight m Check parking area for obstacles, arrange for marshaller or wing-walker m The mission pilot will perform the passenger briefing and review the emergency egress procedure. The pilot should also brief the crew on the fuel management plan and assumptions, and assign responsibility for inquiring about fuel status once an hour. m The pilot will review the taxi plan and taxiway diagram, and assign crew responsibilities for taxi m Once everyone is settled in, organize the cockpit and review the "Engine Fire on Start" procedure

270 Departure m Always use the checklists; use the challenge/response method m Seat belts and shoulder harness (always <1000 AGL) m Collision avoidance! An increasing number of taxi mishaps are the number one trend in CAP. Investigations reveal that pilots are: straying from designated taxi routes, not allowing adequate clearance, not considering the tail and wings during turns, taxiing too fast for conditions, taxiing with obscured visibility, distracted by cockpit duties, and not using other crewmembers to ensure clearance.

271 Departure m CAPR 60-1 taxi rules : Taxi no faster than a slow walk when within 10 feet of obstacles Maintain at least 50' behind light single-engine aircraft, 100' behind small multi-engine and jet aircraft, and 500' behind heavies and taxiing helicopters m Go over the crew assignments for takeoff and departure and make sure each crewmember knows in which direction they should be looking during each. m Remind the crew that midair collisions are most likely to occur in daylight VFR conditions within five miles of an airport at or below 3,000 AGL ! This means that most midair collisions occur in or near the traffic pattern. Since the pilot has only one set of eyes, this (and aircraft design) leaves several 'blind spots' that the observer and scanner must cover -- particularly between your 4 and 8 o'clock positions.

272 Departure m Be sure and include the DF unit's Alarm light self-test in your scan during startup. The light should blink for several seconds; if it doesn't your unit may be inoperative. m Ensure that the DF, Audio Panel and FM radio are set up properly. If possible, perform an FM radio check. Select your initial VOR radial(s) and GPS setting (e.g., destination or flight plan). m Obtain ATIS and Clearance (read back all clearances and hold-short instructions). Then verify the crosswind limitation. Set up the navigational instruments (e.g., VOR radials and GPS destination, entry points and waypoints) m Once you begin taxiing, check your brakes

273 Departure m Sterile cockpit rules are now in effect m Keep the checklist close at hand, open to Emergency Procedures m Check for landing aircraft before taking the active m At takeoff, start the Observer Log with the time and Hobbs for "Wheels Up m The FAA's "operation lights on" encourages pilots to keep aircraft lights on when operating within 10 miles of an airport, or wherever flocks of birds may be expected m While departing the airport environs practice collision avoidance and maintain the sterile cockpit until well clear of traffic and obstacles. The pilot should use shallow S-turns and lift a wing before turns to check for traffic. The crew must keep each other appraised of conflicting aircraft and obstacles

274 Arrival at Mission Base m Obtain ATIS (or AWOS) as soon as possible. May be able to contact mission base on FM radio. m Review taxi plan/airport taxi diagram and make crew assignments for approach, landing and taxi m Make sure each crewmember knows in which direction they should be looking during each. Remind the crew that midair collisions are most likely to occur in daylight VFR conditions within five miles of an airport at or below 3,000 AGL ! This means that most midair collisions occur in the traffic pattern, with over half occurring on final approach m Sterile cockpit rules are now in effect

275 Arrival at Mission Base m Practice collision avoidance by turning the aircraft exterior lights on when within 10 miles of the airport. The pilot should use shallow S-turns and lift a wing before turns to check for traffic. Read back all clearances and hold-short instructions m Defer after-landing checks until clear m Log and report "Wheels Down" m Watch for Marshallers and follow their directions, signal Ignition Switch OFF (hold keys out the window) so they can chock

276 Arrival at Mission Base (with style)

277 Arrival at Mission Base m Secure the aircraft : Avionics/Control lock, Master Switch OFF Tie-downs, chocks, Pitot tube cover and engine plugs Close windows, Fuel Selector Switch in 'Right' or 'Left,' and Parking Brake OFF; remove personal items and special equipment; lock the doors and baggage compartment. m Oil & fuel, clean windows and leading edges m Close FAA flight plan, call FRO m Check aircrew and aircraft into the mission m Complete Inbound 104 m Get sortie assignment m Determine food and lodging

278 General Briefing m Mission objective and status m Safety and hazards m Mission base procedures m Weather m Frequencies m Code words

279 Operational Risk Management m Accomplish the mission with the least possible risk. m More than common sense, more than just a safety program. m Educated (informed) risk versus taking a gamble. m Part of the CAP culture.

280 ORM – Six Steps m Identify the hazards m Assess the risks m Analyze risk control measures m Make control decisions m Implement risk controls m Supervise and review

281 ORM Principles m Accept no unnecessary risks. m Make risk decisions at the appropriate level. m Accept risk when the benefits outweigh the costs. m Integrate ORM into CAP practices, procedures, and planning at all levels.

282 ORM and the Aircrew m Acknowledge risks in order to deal with them. m Each crewmember is responsible to look for risks. m Dont ignore risks; if you cant eliminate or reduce the risk, tell someone. m PIC has ultimate authority and responsibility to deal with risks during the sortie. m PIC has the responsibility to inform his or her crew of the risks involved, and to listen to and address their concerns.

283 Aircrew Briefing m Sortie Objectives m Weather m Altitudes m Duties

284 CAPF 104 Front - Flight Plan - Briefing form

285 QUESTIONS?

286 Preparing to Leave on a Sortie m Check in with briefing officer m Check in with air operations m Present 104 to flight line supervisor m Pilot pre-flights aircraft m Observer checks mission equipment and supplies m Review flight time and duty limitations m Final restroom visit

287 Preparing to Leave on a Sortie m Pilots briefing: Seat belts and shoulder harness, no smoking Seat belts & shoulder harness, emergency egress procedure Fuel management plan and assumptions Taxi plan/diagram, crew assignments Startup and Taxi emergency procedures When sterile cockpit rules are in effect m When more than one flight is accomplished by the same crew during the day, subsequent briefings are not required to be so detailed but must, at a minimum, highlight differences and changes from the original briefing

288 Preparing to Leave on a Sortie m If this is the first sortie of the day the observer will perform an FM radio check with mission base; you may also perform a DF functional check if this is an ELT search. Other special equipment should also be tested before the first sortie. m Enter sortie settings into the GPS (destination or flight plan, entry points and waypoints)

289 Taxi Mishaps m Becoming a bigger problem each year (#1 trend in CAP) m Pilots are: straying from designated taxi routes not allowing adequate clearance and not considering the tail and wings during turns taxiing too fast for conditions and taxiing with obscured visibility distracted by cockpit duties not using other crewmembers to ensure clearance m Strategies: Thorough planning and preparation eliminates distractions Crew assignments for taxi Treat taxiing with the seriousness it deserves Sterile cockpit rules

290 Taxi and Departure m The sterile cockpit rules begin at this time m Startup, taxi and departure were covered earlier m If there are flight line Marshallers, they will expect you to turn on your rotating beacon and signal the impending engine start before starting the engine. You are also expected to signal (e.g., turn on your pulse light or flash your taxi/landing light) before beginning to taxi. m Observer begins Observer Log with time and Hobbs, reports Wheels Up m Takeoff, climb and departure were covered earlier m Once clear of the airport/controlled airspace environs the crew settles into the transit phase

291 During the Sortie m Depending on circumstances (e.g., the airspace is still congested or multiple obstacles are present) the sterile cockpit rules are normally suspended at this time. The aircrew maintains situational awareness at all times during the flight m Double-check navigational settings that will be used in the search area, review search area terrain and obstacles, review methods to reduce crew fatigue during the search or to combat high altitude effects. m Update in-flight weather, file PIREPs, periodically check navigational equipment against each other to detect abnormalities or failures

292 During the Sortie m The pilot should stabilize the aircraft at the assigned search heading, altitude and airspeed at least two miles before you enter the search area, and turn sufficient aircraft exterior lights on to maximize visibility (so others can "see and avoid") m Observer logs and reports Entering the Search Area, primary duty is now Scanner m Periodic Ops Normal reports, Observer asks about fuel status and altimeter setting at least hourly m Scanner and observer logs, sketches

293 During the Sortie m During the actual search or assessment, the aircrew must be completely honest with each other concerning their own condition and other factors affecting search effectiveness. If you missed something, or think you saw something, say so. If you have a question, ask. m If target spotted notify mission base immediately ; begin recovery ASAP m Mission commander monitors for fatigue, ensures crew drinks enough fluids, schedules breaks

294 Return to Base m When the aircraft completes its mission and leaves the search area, the observer notes the time and the Hobbs reading and reports "Leaving the Search Area m Double-check heading and altitude with what was assigned for transit to the next search area or return to base. m Reorganize the cockpit in preparation for approach and landing. m Approach, landing and arrival were covered earlier

295 Return to Base m Check back in and take a break m Drawings or markings made on charts or maps should be transferred onto the CAPF 104 or attached to it m Make sure everything is clear and legible m The two most common entries overlooked when completing the CAP flight plan (front side of the CAPF 104) are " ATD " (actual time of departure) and " Actual LDG Time."

296 CAPF 104 Reverse

297 Debriefing m Note both Positive and Negative results m Use the reverse of CAPF 104 m Used to determine how effective the search was: Weather shadows, visibility, snow cover Terrain open, flat, mountainous, rough Ground Cover barren, forest, scrub, sparse, dense Other information hazards, changes from plan m Used to calculate the probability of detection that is used for subsequent search planning

298 Debriefing m Complete the reverse side of the CAPF 104 m Discuss items on the 104 m Assemble attachments m Report to debriefer m Be TOTALLY HONEST during the debriefing

299 Debriefing m Crew comments about effectiveness m Crew remarks of SAR effectiveness m Times (and Hobbs readings) m Sketches and attachments m Be TOTALLY HONEST during the debriefing

300 End of the Mission m Turn in equipment and supplies m Settle fuel, food and lodging bills m Plan the trip home m Fill out Outbound CAPF 104 m Check weather and file FAA Flight Plan m Check out with mission staff, obtain flight release

301 The Trip Home m Maintain crew discipline and continue to use mission procedures and checklists m SAR personnel can experience post-traumatic stress, so look for signs (refer to CAPR 60-5) m Once on the ground, secure the aircraft and ready it for its next mission m Close FAA Flight Plan m Complete the Outbound 104 m Ensure ability to complete CAPF 108 m Once everyone is at home, call mission base with Hobbs from the Outbound 104

302 Local Drills and Exercises m Easy m Inexpensive m Very efficient m Very worthwhile m Fun

303 QUESTIONS?

304 Crew Resource Management (Chapter 14)

305 m Discuss failures and the error chain. {P; 14.2} m Discuss situational awareness. {P; 14.3} m Discuss how to regain SA once lost. {P; 14.4} m Describe barriers to communications. {P; 14.5} m Define and discuss task saturation. {P; 14.6} m Discuss assignments and coordination of duties. {P; 14.8} Objectives

306 Why CRM? m Properly trained aircrew members can collectively perform complex tasks better and make more accurate decisions than the single best performer on the team m An untrained team's overall performance can be significantly worse than the performance of its weakest single member m We will cover behavior and attitudes of teamwork and communication among team members

307 Why CRM? m CAP m Aircraft accidents95631 m Per 100,000 hours m A/C flight incidents m A/C ground incidents78368 m Fatalities72320

308 Why CRM? m MISHAP m Taxi949 m Ground463 m Landing8810 m Other432

309 Failures m Parts and equipment. Mechanical failures m People. Human failures

310 The Error Chain m. A series of event links that, when considered together, cause a mishap m Should any one of the links bebroken, then the mishap probably will not occur m It is up to each crewmember to recognize a link and break the error chain

311 Situational Awareness (SA) m. Know what is going on around you at all times m Requires: Good mental health Good physical health Attentiveness Inquisitiveness

312 Loss of SA m Strength of an Idea m Hidden agenda m Complacency m Accommodation m Sudden Loss of Judgement

313 Symptoms of Loss of SA m Fixation m Ambiguity m Complacency m Euphoria m Confusion m Distraction m Overload

314 Hazardous Attitudes m Anti-authority m Impulsiveness m Invulnerability m Macho m Resignation m Get There It-us

315 Regaining SA m Reduce workload: Suspend the mission. m Reduce threats: Get away from the ground and other obstacles (e.g., climb to a safe altitude). Establish a stable flight profile where you can safely analyze the situation. m Remember: Aviate, Navigate, Communicate

316 How do we get it back? m Trust your gut feelings m Time Out, Abort, or This is Stupid. Pilot establishes aircraft in a safe and stable configuration, and then discuss the problem m Sterile Cockpit Limit talk to the minimum necessary for safety. Taxi, takeoff, departure, low-level flying, approach, landing

317 QUESTIONS?

318 Barriers to Communication m Hearing The biological function of receiving sounds, converting them to electrical impulses, and having the brain interpret them m Listening Correctly identifying what the sender has sent in their message

319 Barriers to Communication m Distracters Physical/Mental: Noise, static, simultaneous transmissions; fatigue and stress Wording: Incomplete or ambiguous message, too complex or uses unfamiliar terminology Personal: Boring, lack of rapport or lack of credibility

320 Task Saturation m Too much information at one time m Too many tasks to accomplish in a given time m Usually occurs when an individual is confronted with a new or unexpected situation and loses SA

321 Task Saturation m Keep your workload to an acceptable level m If you feel overwhelmed, tell the others before becoming saturated and losing you situational awareness m Watch your team members for signs of saturation

322 Identification of Resources m External and internal m Identify your resources, know where to find them, and how to use them to accomplish the mission

323 Assignment of Duties m CAPR 60-3 m Flight-related -- aircraft commander m Mission-related -- mission commander

324 Crew Coordination m Understand and execute your assignments m Communicate m Question

325 Summary m Pay close attention to all briefings m Understand the big picture m Watch for task overload in yourself and other crewmembers m 67% of air transport accidents occur during 17% of the flight time - taxi, takeoff, departure, approach and landing. Keep casual conversation and distractions to a minimum during these phases of flight. m Begin critical communications with instructions, then explain

326 Summary m Successful missions hinge on each and every crewmember m Learn how to use the procedures and tools available to you, and use them correctly m Never stop learning m Dont be afraid to ask questions m Never criticize someone for asking questions m Anyone can call Time Out, Abort, or This is Stupid m Remember that the Mission Pilot must make the final decision based on the crews input.

327 QUESTIONS?

328 EXTRA STUFF

329 Pilot Records and Form 91 Review

330 Introduction m The purpose of this section is to review the CAPF 91 (CAP Mission Pilot Checkout) m First, a look at what records should be in your Pilot File

331 Pilot Records (from and 60-2) m Copy of FAA pilot certificate m Copy of current FAA CFI certificate, if applicable m Copy of current FAA Medical certificate m Documentation of flight review or equivalent (may be annotated on current CAPF 5) * m Copies of most recent Form 5s establishing aircraft qualification in each type in which qualified * m Copy of each completed Aircraft Questionnaire *

332 Pilot Records (from and 60-2) m Proof of completion of annual Form 5 written exam (certificate or answer sheet) * m Copy of most current Form 91 * m Signed Statement of Understanding m Copies of current designation (CAPF 2a signed by current wing commander) as Cadet Orientation Pilot, ROTC Cadet Orientation Pilot, Check Pilot, Instructor Pilot, Mission Check Pilot, and/or Subordinate Stan/Eval Officer * m Copy of letter or certificate indicating successful completion of the National Check Pilot Standardization Course * m * Need not be maintained in records once all the Wings records are in the Flight Management System (FMS)

333 Optional Records m FRO Personal authorization m Current CAP Membership card m Current CAP 101 card and CAPF 114 (training record) m CAP Communications certificate (CAPF 76, ROA) m Award of Aeronautical Rating (CAPF 2a) m Documentation of total PIC hours (photocopy of last page of your logbook) m FAA A&P certificate m Emergency Notification Data (CAPF 60) m FAA Wings certificate (highest level held) m Current CPR, Basic Care, Bloodborne Pathogens cards m Keep expired Form 5s at home

334 ORAL DISCUSSION m CAPF 116 Written Exam Passed (Initial only) m Mission Base Procedures m Air-to-ground signals m CAP Radio Procedures (as required) m Individual & Crew Equipment/Clothing m Search Procedures m Map and chart Reading

335 PRE-FLIGHT PLANNING m Determine Performance Limitations m Obtain Mission Briefing m Gridded Sectional m Observer Briefing m Fuel Planning & Reserve m Ground Team Coordination

336 VISUAL SEARCH PATTERNS & PROCEDURES m Locate Grid or Area (without electronic aids) m Establish Search Altitude and Speed m Parallel Search Procedures m Creeping Line Search Procedures m Expanding Square Search Procedures m Ground Team Coordination

337 ELECTRONIC SEARCH PATTERNS & PROCEDURES m Locate Starting Point (with & without electronic aids) m Establish Appropriate Search Altitude m VHF-DF Procedures m Wing Null Procedures m Aural (build-fade) Procedures

338 MOUNTAINOUS TERRAIN PROCEDURES m Locate Grid/Area (with & without electronic nav) m Establish Search Altitude m Contour Search Procedures m Canyon Search Procedures m Ridge Crossing procedures m Communications Procedures m Wing/Updrafts/Downdrafts m Mountain Wave Effect

339 EMERGENCY PROCEDURES m Low Altitude Engine Failure m Ditching m Landing on Unprepared Surface m Deteriorating Weather

340 MISSION FLIGHT MANEUVERS m 720° Steep Turns m Turns About a Point m Message Drop Procedure (verbal) m Airspeed Control m Low Speed Maneuvering m Low Level Navigation (without electronic navaids) m Judgment

341 SAFETY AWARENESS m Clearing Turns and Collision Avoidance m Vigilance m Cockpit Resource Management m Risk Management

342 QUESTIONS?

343 Review and Test


Download ppt "CAP Mission Aircrew Mission Pilot Course CAP Mission Aircrew Mission Pilot Course."

Similar presentations


Ads by Google