Download presentation

Presentation is loading. Please wait.

Published byMakena Goll Modified over 2 years ago

1
1.6 Trig Functions Black Canyon of the Gunnison National Park, Colorado

2
Trigonometric functions are used extensively in calculus. When you use trig functions in calculus, you must use radian measure for the angles. The best plan is to set the calculator mode to radians and use when you need to use degrees. 2nd o If you want to brush up on trig functions, they are graphed in your book.

3
Even and Odd Trig Functions: Even functions behave like polynomials with even exponents, in that when you change the sign of x, the y value doesnt change. Cosine is an even function because: Secant is also an even function, because it is the reciprocal of cosine. Even functions are symmetric about the y - axis.

4
Even and Odd Trig Functions: Odd functions behave like polynomials with odd exponents, in that when you change the sign of x, the sign of the y value also changes. Sine is an odd function because: Cosecant, tangent and cotangent are also odd, because their formulas contain the sine function. Odd functions have origin symmetry.

5
The rules for shifting, stretching, shrinking, and reflecting the graph of a function apply to trigonometric functions. Vertical stretch or shrink; reflection about x -axis Horizontal stretch or shrink; reflection about y -axis Horizontal shift Vertical shift Positive c moves left. Positive d moves up. The horizontal changes happen in the opposite direction to what you might expect. is a stretch. is a shrink.

6
When we apply these rules to sine and cosine, we use some different terms. Horizontal shift Vertical shift is the amplitude. is the period. A B C D

7
Trig functions are not one-to-one. However, the domain can be restricted for trig functions to make them one-to-one. These restricted trig functions have inverses. Inverse trig functions and their restricted domains and ranges are defined in the book.

8
The sine equation is built into the TI-89 as a sinusoidal regression equation. For practice, we will find the sinusoidal equation for the tuning fork data in the book. To save time, we will use only five points instead of all the data.

9
Time: Pressure: nd {.00108,.00198,.00289,.00379, } STO alpha L 1 ENTER 2nd MATH 63 StatisticsRegressions 9 SinReg alpha L 1 L 2 ENTER Done The calculator should return:, Tuning Fork Data

10
2nd MATH 68 StatisticsShowStat ENTER The calculator gives you an equation and constants: 2nd MATH 63 StatisticsRegressions 9 SinReg alpha L 1 alpha L 2 ENTER Done The calculator should return:,

11
We can use the calculator to plot the new curve along with the original points: Y= y1=regeq(x) 2nd VAR-LINK regeq x ) Plot 1 ENTER WINDOW

12
Plot 1 ENTER WINDOW GRAPH

13
WINDOW GRAPH You could use the trace function to investigate the pressure at any given time.

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google