Download presentation

Presentation is loading. Please wait.

Published byAntonia Dewhirst Modified over 4 years ago

1
Eco 5385 Predictive Analytics For Economists Spring 2014 Professor Tom Fomby Director, Richard B. Johnson Center for Economic Studies Department of Economics SMU

2
Presentation 6 The K-Nearest-Neighbors Model For Prediction or Classification Chapter 7 in SPB

3
OUTLINE I. K-NN: A Nonparametric Method A. No Parameters to Estimate as in Multiple Linear Regression B. Definition of Euclidean Distance between Vectors C. Recommendation: Standardize Input Variables before Proceeding

4
OUTLINE II. Un-Weighted Nearest Neighbor Scores: Simple Average of Training Neighbors Output Values III. Weighted Nearest Neighbor Scores: Weighted Average of Training Neighbors Output Values IV. Therefore K-NN is a sophisticated Step- Function Predictor that relies on an Average of Neighborhood Output Values taken from the Training Data Set

5
OUTLINE V. In the K-NN Prediction Problem the Neighborhood Size, K, is the tuning parameter VI. In the K-NN Classification Problem there are two tuning parameters: The Neighborhood Size and the cut-off probability for choice selection VII. The K-NN Tuning Parameters are Often Chosen so as to maximize the accuracy of scoring the Validation Data Set

6
Now for a Discussion of the Various Parts of this Outline go to the pdf file K-NN Method.pdf

7
Classroom Exercise: Exercise 4

Similar presentations

OK

Overview of Supervised Learning. 2015-10-23Overview of Supervised Learning2 Outline Linear Regression and Nearest Neighbors method Statistical Decision.

Overview of Supervised Learning. 2015-10-23Overview of Supervised Learning2 Outline Linear Regression and Nearest Neighbors method Statistical Decision.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google