Presentation is loading. Please wait.

Presentation is loading. Please wait.

D10 COMMITTEE ON PIPE AND TUBE WELDING INFORMATION ON-HAND, PROBLEMS SOLVED, QUESTIONS ANSWERED.

Similar presentations


Presentation on theme: "D10 COMMITTEE ON PIPE AND TUBE WELDING INFORMATION ON-HAND, PROBLEMS SOLVED, QUESTIONS ANSWERED."— Presentation transcript:

1

2 D10 COMMITTEE ON PIPE AND TUBE WELDING INFORMATION ON-HAND, PROBLEMS SOLVED, QUESTIONS ANSWERED

3 KNOWLEDGE IS POWER NO MATTER WHAT LEVEL OF THE INDUSTRY YOU WORK … THE D10 DOCUMENT COLLECTION HAS THE INFORMATION YOU SHOULD HAVE AT YOUR FINGERTIPS

4 MATERIALS & METHODS COVERED AUSTENITIC STAINLESS STEEL TITANIUM ALUMINUM CHROME-MOLY LOCAL HEAT TREATING ROOT PASS WELDING MILD STEEL COPPER TUBE

5 WELDING PROCESS GTAW SMAW FCAW GMAW BRAZING

6 William F. Newell, Jr. PE, IWE, Chair D10C D10.4 RECOMMENDED PRACTICES FOR WELDING AUSTENITIC CHROMIUM-NICKEL STAINLESS STEEL PIPE AND TUBING

7 AWS D10.4 …to provide information which may be used to avoid, or at least minimize, difficulties in welding austenitic stainless steel piping and tubing. …

8 AWS D Uses Often overlooked…… Excellent resource for: –Developing Corporate Procedures & Specifications –Training Engineers, Supervision and Welders –General Reference Guide

9 AWS D History First published in August 1955 under the title, The Welding of Austenitic Chromium-Nickel Steel Piping and Tubing. A Committee Report and published as AWS D T AWS D T was revised in 1966

10 AWS D History In 1979, a major updating of the document was completed and published as AWS D , Recommended Practices for Welding Austenitic Chromium-Nickel Stainless Steel Piping and Tubing. This version presented a detailed discussion of the role of delta ferrite in austenitic chromium-nickel steel welds.

11 AWS D History In 1986, the document was expanded and given an Annex which gives recommendations for welding high- carbon stainless steel castings. In 1992 and 1999, the document was reaffirmed.

12 AWS D History The current document, ANSI/AWS D10.4M/D10.4:199X, Guide for Welding Austenitic Chromium-Nickel Stainless Steel Piping and Tubing has extended safety and health information and provides information on super austenitic stainless steels and flux cored arc welding. Tables listing specific chemical composition ranges for base metal and weld metal that fall under the jurisdiction of other codes or documents have been omitted from this revision. Where helpful, however, comparison data is presented.

13 AWS D Content Base Metals & Weld Filler Metals Ferrite Welding Processes, Technique & Problems Dissimilar Joining Inspection Safety

14 AWS D10.4 – Base Metals Austenitic –300-series Super Austenitic –4% & 6% Mo High Carbon –HX Grades

15 Coming ! D10.18 (DRAFT) Guide for Welding Ferritic/Austenitic Duplex Stainless Steel Piping and Tubing

16 Don Connell Welding Engineer Detroit Edison Company D10.6 RECOMMENDED PRACTICES FOR GAS TUNGSTEN ARC WELDING OF TITANIUM PIPING AND TUBING

17 Applications for Ti Pipe & Tube Where Ti is selected for its corrosion resistance rather than its high strength to weight ratio Chemical processing Petrochemical Desalination Power generation plants Navy to replace Cu-Ni in seawater piping

18 Process-GTAW Other processes may be used to weld Ti but are not covered in this recommended practice

19 Base Metals 6 grades commonly used for piping, all single phase alpha Ref: ASTM B337 (seamless & welded pipe) & B338 (seamless & welded tubing) Replaced by ASTM B861 and B862

20 Critical Factors in Welding Cleanliness-proper means of mechanical and chemical cleaning using acids and solvents Protection from contaminants at elevated temperatures –Trailing shields –Root shielding –Chamber welding

21 Quality Control Simple tests to check the process before welding & the finished weldment Describes how weld color is an indication of weld quality

22

23

24 Other References AWS G2.4 to be published this year Addresses CP and Ti alloys, such as Ti-6Al-4V Helpful guide in base metal selection Other welding processes included Tables of reference documents

25 Tony Anderson ESAB Welding & Cutting D10.7 RECOMMENDED PRACTICES FOR GAS SHIELDED ARC WELDING OF ALUMINUN AND ALUMINUM ALLOY PIPE

26 Presented By: Tony Anderson, ESAB North America <> The Number One Issue Filler Alloy Selection For Aluminum Welding A Need To Up Date This Information © Copyright 2005 ESAB Welding & Cutting

27 <> Many Base Alloys And Base Alloy Combinations Can Be Joined Using Several Different Filler Alloys Only one filler alloy may be optimum for a specific application When Choosing The Optimum Filler Alloy, the End Use Of The Weldment And Its Desired Performance Must Be The Prime Consideration.

28 <> Weldability Or Freedom From Cracking Strength Of Weld - Tensile Or Shear Ductility Of Weld Corrosion Resistance Temperature Service Match in color after anodizing Post Weld Heat Treatment Filler Alloy Selection Primary Characteristics W S D C T M * *

29 <> Hot Weld Cracking Hot Cracking On 2014 Base Alloy Plate Adjacent To A Gas Tungsten Arc (GTA) Welded 4043 Alloy Fillet

30 <> Weld Cracking - HOT Choice Of Filler Metal Lower Melting & Solidification Point - Molten During Maximum Contraction Stresses Smaller Freezing Zone Avoid Critical Chemistry Ranges Si 0.5% To 2.0% Example: % ( Electrode ) % ( Base ) Avoid Welding 5xxx Esp.. ( 5086, 5083, 5456 ) With 4043 Or 4xxx. Mgsi Eutectic Problems Avoid Mg Range Up To 3.0% In Weld

31 Alloy Content vs. Crack Sensitivity <> COMPOSITION OF WELD - PERCENT ALLOYING ELEMENT RELATIVE CRACK SENSITIVITY

32 Dilution Effect On Weld Composition <> 60% Filler Metal 40% Base Metal 20% Filler Metal 80% Base Metal 1.7% Mg 3.2% Mg Base Plate 6061Filler Metal 5356

33 <> Weld Strength - Groove Welds The Heat Of Welding Softens the Aluminum Base Alloy Adjacent To The Weld In Most Groove Welds the H.A.Z. of the Base Alloy Will Control the As-welded Tensile Strength of the Joint

34 Heat Affected Zone <> Non Heat Treatable A - Weld Metal As Cast Structure Of Base & Filler Metal B - Fusion Zone Where Partial Melting Of Base Metal Occurs C - Anneal Zone Where Base Metal Is Fully Recrystallized - Full Soft D - Partial Anneal Zone Where Base Alloy Is Recovered And Partially Softened E - Unaffected Heat Treatable A - Weld Zone B - Fusion Zone C - Solid Solution Zone Where Alloy Elements Are Solutioned & Cooled To Retain Solid Solution D - Partially Annealed Overaged Zone Where Heat Has Caused Precipitation And/or Coalescence Of Particles Of Soluable Constituents E - Unaffected

35 Hardness Profiles of 6061-T6 <> Distance From Weld Interface Hardness R E Made At Three Heat Inputs

36 <> Weld Strength - Fillet Welds The Shear Strength Of Fillet Welds Is The Significant Factor And Is Controlled By The Shear Strength Through The Weld Metal 5356 Produces Greater Fillet Weld Strength In The As Welded Condition Compared To 4043

37 Shear Strength <> TRANSVERSE Fillet Size (Inch) Shear Strength LBS. Per Linear Inch

38 <> Shear Strength Typical Shear Strengths Of Fillet Welds Filler Alloy Longitudinal Shear Strength ( Ksi ) Transverse Shear Strength ( Ksi )

39 <> Fracture Characteristics Heat - Treatable Alloys Ratio = Tear Resistance Unit Propagation Energy In.-lb. / In 3 Notch Tensile Strength Tensile Yield Strength

40 <> Corrosion Facts – As Welded Alloy 7075-T6 Welded With 5356 Filler -849mv-876mv-900mv-810mv Post Weld Heat Treated and Aged -810mv -840mv-806mv Note: Fusion Zone Mechanical Properties Not Restored to PreWeld Properties

41 <> Color Match After Anodize M Rating Scale: A - B Ratings Scale Measures Uniformity Of Color Comparing Base Alloy And Weld Metal After Anodizing. Either There Is A Good Or Reasonable Match Or There Is Not. A Blank Space Indicates No Reasonable Match.

42 <> Color Match After Clear Anodize Base Metal: 6061

43 <> Post Weld Heat Treatment Filler Alloys Have Been Developed Which Will Respond To Postweld Heat Treatment Was Developed For Welding The 6xxx Base Alloys, Has Additions Of Mg And Is Less Dependant On Dilution Of The Base Alloy To Achieve Desired Composition. Filler Alloys For Welding Castings Have Been Developed With Chemistries Which Will Respond To Post Weld Heat Treatment.

44 Conclusion Can only be made after a full analysis of a welded components performance requirements Should involve the consideration of metallurgical effects (changes in crack sensitively) when combining base alloy chemistry with filler alloy chemistry Can substantially influence the strength and performance of a welded component Filler Alloy Selection For Aluminum <> © Copyright 2005 ESAB Welding & Cutting

45 William F. Newell, Jr. PE, IWE, Chair D10I D10.8 RECOMMENDED PRACTICES FOR WELDING OF CHROMIUM- MOLYBDENUM STEEL PIPING AND TUBING

46 AWS D10.8 … provide recommendations for welding chromium-molybdenum steel pipe and tubing to itself and to various other materials. Subjects covered in detail are filler metal selection, joint design, preheating, and postheating. …

47 AWS D Uses Often overlooked…… Excellent resource for: –Developing Corporate Procedures & Specifications –Training Engineers, Supervision and Welders –General Reference Guide

48 AWS D History First presented in 1961 as a Committee Report by the AWS Committee on Piping and Tubing. Revised in 1978 and became a Recommended Practice Subsequent revisions/reaffirmations in 1986 and 1996

49 AWS D Content Base Metals Weld Filler Metals Joint Design & Preparation (purging) Preheating Post Weld Heat Treatment Repair/Maintenance of Service Exposed Material Safety

50 AWS D10.8 – Base Metals C-Steel C-Mo 1-1/4Cr-Mo 2-1/4Cr-Mo 5Cr-Mo 7Cr-Mo 9Cr-Mo (Standard Grade Only)

51 AWS D10.8 – Filler Metal Recommendations –Process –AWS Classification Options [C, CrMo & Ni-base] –Similar v. Dissimilar

52 AWS D10.8 – Priorities ! Preaheat w/recommendations Interpass Post Weld Heat Treat w/recommendations

53 Pending ! D10.08 (DRAFT) Removing information on 9CrMoV (P91) Removing References to Standard Welding Procedures

54 Coming ! D10.21 (DRAFT) Guideline for Welding Advanced Chromium-Molybdenum Steel Piping and Tubing –P91, P911, P92, P122, T23…

55 Dan Ciarlariello Mannings USA D10.10 RECOMMENDED PRACTICES FOR LOCAL HEATING OF WELDS IN PIPING AND TUBING

56 Definition of Heat Treatment Heat Treatment is generally defined as heating to a suitable temperature then cooling at a suitable rate of a solid metal or alloy in a way so as to obtain specific conditions and/or properties by changing the physical, chemical and/or mechanical properties of the steel, metal or alloy

57 Methods Of Localized Heat Treating Electrical Resistance Induction Combustion / Flame Quartz Lamps Exothermic Kits.

58 Electrical Resistance

59 Inductive Heating

60 Combustion / Flame

61 Quartz Lamps

62 Reasons for Localized Heat Treating Bake Out Preheating and Inter-pass Temperatures Post Heating Post-weld Heat Treatment

63 Comparison of Heating Processes Attribute Applicability to bake- out Applicability to preheat/inter-pass Applicability to postheating Applicability to PWHT Induction - Resistance Yes Yes

64 Advantages and disadvantages of heating processes Induction Heating Advantages High heating rates Ability to heat a narrow band adjacent to a region which has temperature restrictions Disadvantages High initial equipment cost. Equipment large and less portable. Limited ability to create control zones around the circumference.

65 Advantages and disadvantages of heating processes Electrical Resistance Advantages Ability to continuously maintain heat from welding operation to PWHT Good ability to vary heat around the circumference Disadvantages Elements may be damaged during welding Quantity of heaters required on thicker components

66 High Frequency Induction heating Uniform product quality Increased surface wear-proof characteristics Increased material fatigue strength Minimum strain due to local surface hardening Very localized heating

67 Why Preheat? Reduce the level of thermal stress. Compensate for high heat losses. Minimize the rate of weld hardening. Reduce porosity. Reduce hydrogen cracking. Improve the microstructure.

68 Typical Preheat Set-up

69 Boiler Tube Welds

70 Wireless Thermocouple Transmission

71

72

73

74 AWS D10.11 Walter J. Sperko, P.E. Sperko Engineering Services, Inc. Guide for Root Pass Welding of Pipe Without Backing

75 AWS D10.11 Keywords Root pass welding, pipe, gas purging, consumable insert, gas tungsten arc welding, gas metal arc welding, shielded metal arc welding

76 AWS D10.11 Introduction This publication was intended to be a how to guide in the use of open root and consumable insert welding techniques for root pass welding of groove welds joining metal pipe.

77 AWS D10.11 Introduction Joint designs, fitting techniques, consumable insert configurations, filler and base metal combinations, purging, and welding processes are discussed. This publication made no provision for joints which include backing rings

78 AWS D10.11 Introduction This standard is a best practices guide to making high-quality pipe butt welds where backing cannot be used Welders should have excellent reasons for deviating from what this standard recommends

79 AWS D10.11 What is Root Pass Welding? Lets look at some root passes....

80 AWS D10.11 A single-vee Butt weld between two pipes

81 AWS D10.11 Root pass on a Socket Weld

82 AWS D10.11 Root pass on a Double Vee-Groove Weld

83 AWS D10.11 All of these Root Passes are on backing

84 AWS D10.11 Take away the Backing Strip and you have a weld without backing....

85 Welding without Backing You now have a pool of liquid metal hanging in space suspended between the ends of two pipes...

86 Welding without Backing Torch Blast the arc force through the root opening and melt the edges of the metal, then fill the opening with filler metal

87 Welding without Backing Electrode Blast the arc force through the root opening and melt the edges of the metal, then fill the opening with filler metal

88 Effect of Included Angle LARGE included angle makes it easy to get the electrode close to the root and easy to direct the arc into the root.

89 Effect of Included Angle SMALL included angle holds the electrode away from the root and makes it difficult to direct the arc into the root.

90 Full Root Penetration Continuous metal surface from one member across the weld to the other member

91 Forces on the weld pool? Longitudinal Section of a pipe joint

92 Forces on the weld pool Longitudinal Section of a pipe joint Gravity

93 Forces on the weld pool Longitudinal Section of a pipe joint Surface Cohesion (wetting) between the weld pool and the solid metal

94 Forces on the weld pool Longitudinal Section of a pipe joint The arc must melt both edges of the root face and the weld pool must fill the gap without becoming too large

95 Forces on the weld pool Longitudinal Section of a pipe joint If the weld pool becomes too large, the surface cohesion forces are overcome. The result is root concavity or drop- through.

96 Parts of a Groove Weld Joint Design Root Face (Land)

97 Parts of a Groove Weld Joint Design Root Opening (Root Gap)

98 Root Opening vs. Root Face Thick Root FaceThin Root Face Small Root opening Incomplete Penetration Proportional Root opening Complete Penetration Excessive Root opening Root concavity or burn-through

99 Root Face Thickness Root Opening 1/8 3/32 1/16 1/83/321/16 Root opening - Root face thickness relationship

100

101

102

103 Cleaning Cleanliness is important in all welding, but it is especially important in root pass welding. Contamination affects wetting which affects bead shape.

104

105 Purging

106

107 A purge is required for stainless and nonferrous piping systems (except aluminum) if a smooth root surface is to be obtained. Standard describes how to set up for purging Purging time

108

109

110

111 Purging The following oxygen limits are recommended: For carbon and low alloy steels: 2%(20,000 ppm) For stainless steels: 1/2% (5000 ppm) For nickel alloys: 1/2% (5000 ppm) For titanium and zirconium alloys: 1/4% (2500 ppm)

112 Purging Welding technique for Open Root Welding Technique for Consumable Insert Maintaining purge during welding

113 Fitting and tack welding Size, spacing, feathering ends Root spacing depends on process to be used. Inspection after fit-up. This is the most important step in pipe welding

114 GTAW Tungsten size, shape of end Grinding methods

115 GTAW Joint design and fit up

116 GTAW Purge containment Arc initiation Keyhole technique Wire feed techniques Orientation of torch and filler

117 GTAW

118

119 Walking the Cup Welding with zero root opening (autogenous welding) Welding in different positions Using consumable inserts

120 Consumable Inserts Class 1 Insert, formerly the EB (Electric Boat) or A type insert. 1/32 maximum mismatch

121

122 Consumable Inserts Class 2 Insert, formerly the J type insert. 1/16 maximum mismatch

123 Consumable Inserts Class 3 Insert, formerly the Grinnell or flat insert. 1/16 maximum mismatch

124

125

126

127

128 Consumable Inserts

129 SMAW Cellulosic Electrodes (EXX10, EXX11) Low Hydrogen Electrodes (EXX15, EXX16, EXX18) Rutile electrodes (E6013)

130 GMAW Joint design Fit-up Welding parameters

131 Fill Passes Use any suitable process Dont melt through the root

132 Aluminum Tungsten type, shape of tip Shielding gas cups, lenses Power supplies Techniques Recommended joint design

133 Aluminum

134 Machine and Automatic Not much said

135 Summary AWS D10.11 gives very specific recommendations about techniques that have proven successful in making pipe welds without backing Recommendations should be familiar to welders supervision Recommendations should not be take lightly

136 Alan Beckett D10.12 RECOMMENDED PRACTICES FOR WELDING MILD STEEL PIPE

137 D10.12 Welding Mild Steel Pipe This document provides recommendations for the welding of mild steel pipe such as A106 type. This material is found in many scopes of work, and extensively in commercial building construction. A106 material is often used as a starting point for welder training.

138 Covered Processes SMAW GTAW GMAW FCAW

139 D10.12 A Document for All Reasons As with other D10 documents, you will find excellent attention to detail presented in a manner for all to understand. For these reasons D10.12 is a welcome addition to your library or a valuable resource for training.

140 MICHAEL LANG AWS/CWI/CWE United Association of Plumbers & Pipefitters D10.13 RECOMMENDED PRACTICES FOR BRAZING OF COPPER PIPE AND TUBING FOR MEDICAL GAS SYSTEMS

141 What is Medical Gas Piping? There are many perceptions of Medical Gas Piping but the facts are: Cleanliness is entirely dependant on installation practices Poor installation can produces conditions that harbor bacteria and diseases These systems are not cleanable These are life critical systems

142 Purpose The governing document for all Medical Gas Piping is NPFA Code 99C which dictates the methods and installation practices that shall be used in system construction… However this document does not cover actual brazed joint construction or the tools and practices needed for system construction

143 Important Notes D10.13 is a Recommended Practice developed to work with NFPA 99C. All recommendations have been used in actual jobsite conditions with a 100% success rate The use of these practices have produced consistent profitable results

144 Needed Equipment Use and Care Torch Selection Tube Cutting Purge Monitoring

145 Consumables Pre Braze Joint Cleaning Pre Braze Chemical Cleaning Post Braze Cleaning BCuP Brazing Alloys Bag Brazing Alloys

146 Something you will only find in D10.13 The only document that provides joint heating and filler metal application methods. These methods continually produce a 99% acceptance rate in accordance with ASME Boiler & Pressure Vessel Code Section XI.

147 And… Purging Methods Purging is possibly the most important component to internal cleanliness. This document provides methods and parameters for the use of oxygen analyzers. We also provide purge timing matrix charts for estimating purge times for long runs of piping. These charts should be used in conjunction with an O2 analyzer.

148 D10.13 RECOMMENDED PRACTICES FOR BRAZING OF COPPER PIPE AND TUBING FOR MEDICAL GAS SYSTEMS Proven Success You Can Trust

149 BECOME A COMMITTEE MEMBER FOR DETAILS CONTACT Brian McGrath at THANK YOU FOR ATTENDING AND ENJOY THE AWS SHOW


Download ppt "D10 COMMITTEE ON PIPE AND TUBE WELDING INFORMATION ON-HAND, PROBLEMS SOLVED, QUESTIONS ANSWERED."

Similar presentations


Ads by Google