Presentation is loading. Please wait.

Presentation is loading. Please wait.

CMSC 2005 Presented by: Craig Cramer Boeing 787 Operations Mandrel Production Readiness Leader Dimensional Management of Composite Tooling for the Worlds.

Similar presentations


Presentation on theme: "CMSC 2005 Presented by: Craig Cramer Boeing 787 Operations Mandrel Production Readiness Leader Dimensional Management of Composite Tooling for the Worlds."— Presentation transcript:

1 CMSC 2005 Presented by: Craig Cramer Boeing 787 Operations Mandrel Production Readiness Leader Dimensional Management of Composite Tooling for the Worlds Largest One Piece, All Composite Aircraft Fuselage

2 CMSC 2005 Composite Solutions Applied Throughout the 787 Carbon laminate Carbon sandwich Fiberglass Aluminum Aluminum/steel/titanium pylons Composites 50% Aluminum 20% Titanium 15% Fiberglass 10% Other 5%

3 CMSC 2005 The Project Build a complete Test and Certification Barrel of the Boeing 787 Dreamliner fuselage (The 787 Fuselage team). Construct this all composite fuselage as a One Piece Skin-Stinger Bond Assembly. The Barrel, when completely assembled with doors, windows, floors, etc., will be fatigue tested for FAA Certification. Maintain commonality between Boeing, the world wide Partners and the Suppliers (The Production Readiness Team [PRT]).

4 CMSC 2005 Completed Test Barrel

5 CMSC 2005 Metrology Application Metrology challenge: inspect the many surfaces of the Tools to optimize the as-built condition of each Sub-Assembly when the entire Tool is assembled Model Preparation: Develop models, drive files and tolerances Measurement Tasks: (using laser radar scanner and laser trackers) a.Inspect Tools for Quality Assurance b.Use As-Built data to optimally assemble the tool c.Measure IML and OML after fuselage is cured Provide collection data to optimize the manufacturing process Data used in certification and validation of the manufacturing processes for the FAA

6 CMSC 2005 STP - Metrology Situation: New manufacturing processes with shortened flow times require new methods for quickly analyzing data and generating feedback. Target: The proposed test program must have fast feedback loops of the survey data. Proposal: Use scripted measurement plans with Spatial Analyzers common interfaces to metrology systems, thus providing a closed loop control system with critical component features to automated product assembly. A Big Button interface for running the scripts simplifies shop floor implementation while enabling close process flow control. Embedded process checks and tolerances enable the script to handle real-world production assembly processes.

7 CMSC 2005 Situation (Old Method) ENGINEERING SURFACES NOM TOOL SURFACES CREATE NOMINAL INSPECTION FILE CREATE DRIVE FILE NOM NC PROGRAM Catia Excel MACHINE THE TOOL CHECK TOOL Spatial Analyzer STEP FILE TRANSLATOR FORMULATE THE INSPECTION PLAN PowerPoint Catia RESULTS REPORTED Excel MEASURED DATA ANALYZED These processes may take several weeks because they are mostly manual input

8 CMSC 2005 The Target Seamless integration of measurement requirements in the Design/Quality Engineering and Production processes for 787 Fuselage Test Barrels. Accurate and concise analysis of the data collected, verified directly to the digital model. Rapid turn-around of collected data to support decision making. Understandable reporting of the data to all participating parties, delivered in a timely/consistent manner. Make the measurement results available enterprise-wide on the internet. Future application for partner use on production airplane (digital portable solution). All partners/suppliers use the same digital thread: common tie-in and verification method yield product consistency across the supplier/partner chain.

9 CMSC 2005 The Proposal Form a team of metrology experts to script Measurement Plans. Script measurement plans and assist in the surveys as needed (the team). Use the same software throughout the process to avoid misinterpretation of data. Use real time analysis capabilities, on screen, so the operator will know immediately if the data is valid. Inspection buy-off can be done on-the-spot as the survey is being taken, or hand stamped on the paper copy of the report, directly to the design model. Generate reports on-the-spot and/or send results to a server for instant observation upon survey completion (avoid delay). Share reports enterprise-wide via the internet. Use existing tools if possible (SA is currently accredited software in the Boeing Company).

10 CMSC 2005 The Plan (New Method) Write integrated Scripted Measurement Plans and Analysis Tasks to avoid misinterpretation of data. Use the same software to write Measurement Plans, perform the survey and provide analysis. Reduce, or eliminate, the time consumed by manual analysis. Rapid turn-around of analysis after data collection is complete. Work directly with the CAD model. Instrument observations, reference tie-in, and measurement uncertainties are captured, documented and communicated consistently, establishing a level of confidence in production deliveries.

11 CMSC 2005 New Method Flow ENGINEERING SURFACES NOM TOOL SURFACES FORMULATE THE INSPECTION PLAN NOM NC PROGRAM Catia MACHINE THE TOOL Spatial Analyzer GENERATE REPORTS DRIVE FILE & INSPECTION CREATION Spatial Analyzer Spatial Analyzer Spatial Analyzer INSTANT FEED BACK CHECK TOOL DRAFT THE PLAN PowerPoint

12 CMSC 2005 Metrology Automation Concepts Communication between components, including across process and network boundaries Shared measurement process components (e.g., Locate Instrument, AutoMeasure, MeasureMode) Quick error and status reporting Conditional Branching, Looping, and Interactive Queries Dynamic loading of components Constructs for instrument control, compound documents, automation, data transfer, storage and naming

13 CMSC 2005 Templates and Measurement Plans SA Template Files CAD Model and Settings Instruments Location and Settings MP Script of Measurement Process Load Template Start Instrument Interface Data Collection Drive Scanner & Rotate the Tool Auto-Alignment to CAD Feature Detection Extraction Feature Analysis Generate Report Save and Archive Inspection

14 CMSC 2005 Template Creation Model information transfer Getting the drawing intent into the graphics software Elements; Surfaces, Holes, Lines Features; Datum's, Tolerances Creation of tags Modify design standards Standard labeling methods Defined Model layers

15 CMSC 2005 Measurement Plan Automation Automated Drive File Creation – Feature Based

16 CMSC 2005 MP Process Components Templates CAD Model Instruments Measurement plan Initialize (load template) Enhancements Data Collection Registration/Fit to Features Feature Extraction Query/Analysis Process Checks Reporting Data Export Step (AP203,214) Documents: Word,Excel,AVI,HT ML User feed back Pass Fail Graphics Tabular Save & Archive Operator interface Inputs (User info) Run Output

17 CMSC 2005 Completed Barrel with (3) LR200 Scanners Setup #1 #3 #2

18 CMSC 2005 Manage Process Elements Data Exchange Model Tolerances Feature relationships Instrument Interface Drive Instrument Field checks Initial Instrument Alignment Process time Multiple instruments Translation/Rotation stages Integrating different Metrology Devices % of applications need two diff metrologies Master slave control Process triggers Examples: Robot & Scanner Scanner with Tracker

19 CMSC 2005 Acknowledgments Craig Neidig Boeing Commercial Airplanes 787 Tool Engineering File Creation David B. Holm Karl W. Kunst Boeing Management Scott Sandwith New River Kinematics Technical support M.J. Fjellestad Boeing Commercial Airplanes 777 Program Editing

20 CMSC 2005 QUESTIONS?

21 CMSC 2005 Thank you!


Download ppt "CMSC 2005 Presented by: Craig Cramer Boeing 787 Operations Mandrel Production Readiness Leader Dimensional Management of Composite Tooling for the Worlds."

Similar presentations


Ads by Google