Presentation is loading. Please wait.

Presentation is loading. Please wait.

Plastics and Rubbers in Building. Background The use of rubber and plastics materials in buildings, both for construction and decoration, continues to.

Similar presentations


Presentation on theme: "Plastics and Rubbers in Building. Background The use of rubber and plastics materials in buildings, both for construction and decoration, continues to."— Presentation transcript:

1 Plastics and Rubbers in Building

2 Background The use of rubber and plastics materials in buildings, both for construction and decoration, continues to increase, particularly as architects, designers and builders appreciate their advantages in construction terms and in the provision of so called maintenance free structures. Today, plastics materials are so widely used in the building industry that it would be difficult to envisage the construction of any building without them. Many products are available which meet the various building and fire regulations. Some of the areas in which these materials are used are listed in table 1.

3 Adhesives Sealants Roofing materials Waterproof membranes Floor coverings Sound insulation Thermal insulation Anti-vibration mountings Window frames Glazing Pipes and gutters Drainage systems Fascia boards Cladding panels Decorative laminates Geotextiles for earthworks Laminates for formwork Laminates for decoration Flexible foams for upholstery Fibres for carpets and fabrics Paints and varnishes Table 1. Application of plastics and rubbers in building

4 Pipes and Gutters For many years we have seen the gradual replacement of traditional materials such as lead, copper, steel, cast iron and ceramic waste systems with plastic pipes and fittings. Some of the advantages gained are a reduction in weight, ease of fabrication and installation, ease of repair and in many cases a reduction in cost. Because plastic pipes have a smoother bore than their metal counterparts, flow rates can be increased and scale formation is reduced. Plastic pipes also offer advantages in corrosion resistance.

5 Push-Fit Plastic Piping Within buildings the push-fit waste systems have made plumbing much quicker, and also safer from fire hazards, since blow lamps are no longer necessary to wipe lead joints. Externally, a wide range of soil pipes and fittings are available to carry waste to the main sewers. Here the advantages of lighter weight, longer pipe lengths without joints and ease of fabrication have made these an absolute boon to the industry.

6 Push-Fit Plastic Fittings Whilst the bulk of the materials used are thermoplastics, such as PVC (polyvinyl chloride), ABS (acrylonitrile butadiene styrene terpolymer) and polypropylene, without the use of rubber O-rings and compression gaskets push-fit systems would be impractical.

7 Polyethylene pipes With potable water distribution, polyethylene pipes are now widely used. Pipes are available in diameters from a nominal 8 mm bore up to 1000 mm and above, made from specially developed grades of MDPE (medium density polyethylene) which meet a range of water industry specifications. One advantage of plastic pipes over more traditional materials is that in the smaller diameter sizes they are available in continuous lengths of up to 100m or even 250m in some cases. This reduces the number of joints needed and hence the number of potential leaks.

8 For underground potable water distribution pipes are coloured blue. This enables the contents of a buried pipe to be immediately identified on a construction site. Above ground black coloured polyethylene is used to ensure adequate UV stability.

9 Disadvantages of Plastic Piping One disadvantage of plastics materials is their tendency to soften at elevated temperatures. This has restricted their use in hot water systems. However, two materials have found application in underfloor heating systems and to a limited extent for hot water distribution. These are polybutylene (PB) and crosslinked polyethylene (PEX).

10 Polybutylene Polybutylene can be used in systems with a continuous operating temperature of 82°C and will survive short peak temperatures of up to about 110°C but does require continuous support at these higher temperatures. With underfloor heating systems continuous support presents no particular problem. Although failures have occurred in the USA where high levels of chlorine are present in the water supply, similar problems have not arisen in the UK and Europe where the chlorine content is lower.

11 Crosslinked Polyethylene Crosslinked polyethylene (PEX) is made from normal polyethylene by, for example, crosslinking it using a peroxide catalyst. The cross-linking raises the thermal stability of the material under load. Thus, the resistance to environmental stress cracking, creep, and slow crack growth are greatly improved over polyethylene. PEX pipe is approved for potable hot- and cold-water plumbing systems and hot-water (hydronic) heating systems in all model plumbing and mechanical codes across the U.S. and Canada. PEX piping systems are durable, provide security for safe drinking water, and use reliable connections and fittings. There are currently about ten domestic producers of quality PEX piping.

12 Gas distribution Yellow coloured polyethylene pipes are now used for gas distribution, particularly where existing domestic supply pipes have corroded. In this case the replacement plastic pipe is threaded through the existing pipe. This overcomes the need for a trench to be excavated and considerably reduces the cost of replacement. Because the pipe bore is smoother the gas flow is hardly reduced.

13 Electrofusion One recent innovation in jointing pipes has been the introduction of the electrofusion technique. Here special couplers are available which incorporate a heating coil. The coupler is clamped in. position over the two pipe sections to be joined and power is supplied to the heating coil by means of an electronic control unit. The pipe and coupler melt at the interface between the two materials and a permanent fusion bond is formed. This enables consistent joints to be made using relatively unskilled operatives. Using these couplers, permanent repairs can be made to buried pipes with minimal excavation, since only the damaged part of the pipe needs to be replaced rather than a complete section. Plastic guttering and drainage pipes can be found on most buildings today, and usage is such that these products are taken for granted in the same way as bricks, concrete and timber are in building construction. coupler

14 Roofing Systems Corrugated plastic sheeting has been used for roofing in conservatories and buildings where transparent panels have been required. However, in more recent times double and triple walled polycarbonate sheeting has become increasingly used, since this provides not only diffuse daylight for illumination but also heat insulation and hence reduced heating costs.

15 Twin or triple walled polycarbonate Provides a number of advantages during installation since it can be cut with conventional tools, is rigid to handle, does not require closely spaced supports, is light in weight and can be easily fitted. In addition, it can be cold formed or thermoformed into a variety of shapes to provide attractive and functional curved surfaces. Edges and joints can be sealed to prevent draughts. Another major advantage is its resistance to breakage.

16 Roofing Systems continued Polycarbonate sheeting is available which meets BCA for surface spread of flame. This has enabled the material to be used in public areas of buildings where strict fire regulations apply. Specially UV stabilised grades of polycarbonate are used, often with an additional UV barrier film incorporated under the outer skins. Fixing is usually by means of aluminium or UPVC (unplasticated PVC) glazing bars. However, unlike glass, holes can be drilled through the material for screw fixings. More recently, similar twin walled sheeting made from clear UV stabilised PVC has become available. Both materials, polycarbonate and PVC, are available in clear and bronze colours.

17 Cladding Panels UPVC products are now frequently used in place of the more traditional timber products for external cladding panels, fascia and soft boards, particularly on new buildings. Some of the advantages offered by UPVC are lighter weight, resistance to rot, lack of warp and lack' of need for regular maintenance painting. In addition, UPVC meets BS 476: Part 7: Class 1' for surface spread of flame. Products are available in a variety of colours, including wood grain finishes. These may be of solid UPVC, double skin or foam filled double skin construction. When fixing UPVC products, unlike their timber counterparts, due allowance must be made for expansion and contraction to prevent buckling of the sheets due to the heating effect of sunlight. Normally an allowance of 2 mm per metre length must be provided between sections. To allow for this special UPVC jointing and corner sections are available.

18 Unitex cladding fixtures The Unitex range of lightweight cladding solutions has been tailored to suit the needs of specifiers, designers, developers, builders and most importantly the home owner. The Uni-EIFS (External Insulation Finishing System) range is designed so that the insulation is placed on the exterior of the building, equalising the effects of outside temperatures and reducing thermal stresses and strains in the structure. Cold spots and drafts are eliminated because the entire surface is insulated. With Uni-EIFS your house is insulated in summer against heat from the outside, insulated in winter against cold from the outside which means true living comfort all year round.

19 Plastic Fascia

20 Rubber Anti Vibration Mounts In many buildings there is a need to prevent external vibrations from affecting sensitive equipment within the building. This necessitates the incorporation of anti-vibration mounts during the construction of the building. In the UK, laminated elastomeric bearings are usually chosen but in France and Germany, steel coil springs are more often used. Although rubber vibration isolating systems have been known for many years, it is only in the last 10 years or so that methods have become available for designing and analysing high efficiency compound systems. Rubber springs tend to be less massive than the equivalent steel springs for any particular application. In addition, the dynamic properties of rubber can result in such mounts providing protection over a wider range of frequencies, particularly at high frequencies. Rubber mounts are also used to isolate individual items of equipment, such as air conditioning and refrigeration equipment, from the main structure of the building.

21 Plastic anti-vibration mounts

22 Sound Insulation Sound within buildings may be general noise transmitted through walls and floors or a specific noise from vibrating machinery. The latter can be dealt with by using vibration mounts as mentioned above. Air- borne noise can also present problems and must be taken into account when designing sound insulation systems. With general noise, the traditional method was to build very thick and heavy walls and floors. However, as buildings have become lighter, other methods of sound reduction have become necessary. As a general principle, sound insulation can be provided by either a simple and heavy or a light and complex construction. It is in this latter area that rubber and plastics materials have come to the fore.

23 The performance of party walls and floor is controlled by the BCA which give typical constructions that meet the performance requirements. To meet the regulations with light weight constructions some form of dry lining, floating floor or suspended ceiling is needed. However, in all these cases the method of fixing can reduce the efficiency of the system. With floating floor construction, an air gap, created by placing a resilient material such as rubber or foamed plastic between the timber raft and the concrete floor, can achieve the desired result. Since the demand for light weight constructions is increasing, this will provide a steadily increasing outlet for rubber and foamed plastics. Rubber placed under the timber floor

24 With walls in housing, dry lining is often used but in offices and factories, composite wall panels incorporating foamed plastics are available that are easily installed and that provide adequate sound insulation.

25

26 Thermal Insulation As well as sound insulation, buildings need thermal insulation. This can be met by using light weight aerated concrete building blocks during the construction of the building or by incorporating foamed plastic sheeting within the structure. Typical foamed plastics include rigid polyurethane foam and expanded polystyrene, although various other foamed plastics may also be used. Plasterboard can be readily obtained with a 25 mm foamed polystyrene backing. Other composite sheet building products can be obtained with polyurethane foam cores. One particularly important use of polyurethane foams is in the construction of cold rooms for food storage. Here a 100 mm thick sheet of polyurethane foam is sandwiched between two layers of glass fibre reinforced polyester (GRP) or two layers of sheet steel. The surface of the GRP can be flat or lightly embossed to give a semi- decorative appearance. Such surfaces are ideal for use in food storage areas since they can be kept clean with very little effort. For all these applications, whether for sound or thermal insulation, fire retardant foams are available which meet the appropriate building and fire regulations.

27 Polyester Thermal Insulation

28 Window Frames UPVC has been in use for many years for the manufacture of window frames and in particular, frames used for double glazed windows. These comply with BS One of the major advantages is the reduced thermal conductivity over equivalent metal frames. This in turn reduces condensation on the frame. UPVC frames can be easily assembled and do not require regular maintenance. Neither do they need a wooden surround or sub-frame, which can rot. Frames come complete with window as well as other parts of the frame and surround, all manufactured from the same grade of white UPVC. With larger frames, steel reinforcement is often added for extra strength and security. A water tight seal to concrete and brickwork is achieved by bedding the frame in silicone rubber and by injecting a silicone rubber bead along all joints.

29 Plastic Window Frames

30 Plastic Decorative Laminate The normal structure of a plastic decorative laminate includes a sheet of decorative paper impregnated (saturated) with one or several aminic resins, covering the surface of a supporting structure formed by a particleboard (for low pressure laminates) or by kraft paper sheets impregnated with Phenolic resin (high pressure laminates). Plastic decorative laminates have a wide range of uses, they can be used in the furniture industry for kitchen cabinet counters, bookshelves and door linings, among many other things. In the building industry they can be used for partitions screens in order to divide space in offices, houses, etc

31 Plastic Decorative Laminates

32 Construction adhesives There are also water-based versions that can provide better heat resistance, and for superior heat and water resistance, special purpose products such as Selleys Liquid Nails Landscape or Liquid Nails Mirror, Metal and Glass are available. Construction adhesives lose solvent or water to gain strength – they will be slow to cure between non- porous materials such as metals, plastics, dense timbers and painted surfaces. When bonding big broad sheets to flat surfaces, apply beads in one direction only, leaving channels for evaporation. Water based adhesive

33 Construction Adhesive Generally solvent-based, these cost effective, gap-filling adhesives are suitable for bonding sheet flooring, adhering skirtings and architraves, signs and wall panels. They have good adhesion to most substrates (especially porous materials such as wood, concrete, brick, fibre cement and plasterboard).

34 Stud adhesives A stud adhesive is a thick, ready-to-use, water- based, gap-filling adhesive which dries hard. Apart from bonding plasterboard to timber and metal frames, stud adhesives are quite good general purpose adhesives for porous materials in internal (not water-exposed) applications.

35 Adhesive-sealants Sealants must stick/adhere in order to perform the sealing function and tough polyurethane sealants, such as Selleys Proseries Adhesive + Sealant, create a flexible, durable bond which is vibration- and shock-resistant.

36 Two-part epoxy glues These two-part systems must be measured and thoroughly mixed before use. The mixing process starts a chemical reaction which causes the adhesive to gain strength quickly, so jobs can be completed faster. Epoxy glues produce rigid, high-strength bonds and work well on porous surfaces. Non- porous surfaces such as metals should be roughed for better results. Not all have high heat resistance and can be undone by high temperatures.

37 Two-part tile adhesives These adhesives work when a powder (cement) and a liquid (polymer emulsion) are mixed together. Mixing in the liquid can make the cement component stronger, better bonding, more flexible, or more chemical- resistant.


Download ppt "Plastics and Rubbers in Building. Background The use of rubber and plastics materials in buildings, both for construction and decoration, continues to."

Similar presentations


Ads by Google