Download presentation

Presentation is loading. Please wait.

Published byNevaeh Wythe Modified over 2 years ago

1
Uncertainty and Significant Figures Cartoon courtesy of Lab-initio.com

2
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.

3
Why Is there Uncertainty? Measurements are performed with instruments No instrument can read to an infinite number of decimal places Which of these balances has the greatest uncertainty in measurement?

4
Types of Data: Qualitative Data – data collected that does NOT include numbers Examples: red precipitate, beaker felt warm Quantitative Data – data collected that does include numbers Examples: 10.0 g, 35.5 C

5
Precision and Accuracy Accuracy refers to the agreement of a particular value with the true value. how close a measurement is to the actual/ accepted value Precision refers to the degree of agreement among several measurements made in the same manner. the repeatability of measurements; how close multiple measurements (of the same sample) are to each other Neither accurate nor precise Precise but not accurate Precise AND accurate

6
Precision and Accuracy a.accuracy: high precision: NA Bulls eye = analogy for actual/accepted value Arrows = analogy for measurements b. accuracy: low precision: high

7
Percent Error Percent Error – a quantitative expression of accuracy. Percent Error = __Experimental Value-Accepted Value__ Accepted Value Julie measured an object to be 7.89 mm long. When she checked with the actual value of the object, she was supposed to measure 8.91 mm long. What is her percent error?

8
Types of Error Random Error (Indeterminate Error) - measurement has an equal probability of being high or low. Systematic Error (Determinate Error) - Occurs in the same direction each time (high or low), often resulting from poor technique or incorrect calibration.

9
Rules for Counting Significant Figures - Details Nonzero integers always count as significant figures has 4 significant figures

10
Rules for Counting Significant Figures - Details Zeros - Leading zeros do not count as significant figures has 3 significant figures

11
Rules for Counting Significant Figures - Details Zeros - Captive zeros always count as significant figures has 4 significant figures

12
Rules for Counting Significant Figures - Details Zeros Trailing zeros are significant only if the number contains a decimal point has 4 significant figures

13
Sig Fig Practice #1 How many significant figures in each of the following? m 5 sig figs kg 4 sig figs 100,890 L 5 sig figs 3.29 x 10 3 s 3 sig figs cm 2 sig figs 3,200,000 2 sig figs

14
Rules for Significant Figures in Mathematical Operations Multiplication and Division: # sig figs in the result equals the number in the least precise measurement used in the calculation x 2.0 = (2 sig figs)

15
Sig Fig Practice # m x 7.0 m CalculationCalculator says:Answer m 2 23 m g ÷ 23.7 cm g/cm g/cm cm x cm cm cm m ÷ 3.0 s m/s 240 m/s lb x 3.23 ft lb·ft 5870 lb·ft g ÷ 2.87 mL g/mL 2.96 g/mL

16
Rules for Significant Figures in Mathematical Operations Addition and Subtraction: The number of decimal places in the result equals the number of decimal places in the least precise measurement = (3 sig figs)

17
Sig Fig Practice # m m CalculationCalculator says:Answer m 10.2 m g g g 76.3 g 0.02 cm cm cm 2.39 cm L L L L lb lb lb lb mL mL 0.16 mL mL

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google