Presentation is loading. Please wait.

Presentation is loading. Please wait.

Helen Murphy SCC Allied Health Radiology Program

Similar presentations

Presentation on theme: "Helen Murphy SCC Allied Health Radiology Program"— Presentation transcript:

1 Helen Murphy SCC Allied Health Radiology Program
More CXR…

2 Views: PA Upright/ Left Lateral Upright (already talk about)
AP upright chest Supine chest Cross-Table Left Lateral AP/PA Lordotic chest Decub Chest Portable Chest Dual Energy Chest (SHMC) AP done when unable to do patient PA. Too sick, unstable post-op… Supine done when patient unable to sit up… lordotic done to see aspecies… Decubes done for air fluid levels Port done when pt to sick to come down or they don’t want to move patient

3 On all CXRS…. The lung markings, diaphragms, heart borders, hilum, greater vessels, and bony cortical outlines are sharply defined. So use high KVP (sufficient to penetrate the chest structures and provides the contrast scale necessary to visualize the lung details.) and a grid ( to absorb scatter). Sharply defined recorded details are also obtained when patient respiration and body movements are halted(So NO MOTION!!!) The least amount of object “image receptor distance (OID) is maintained. This why PA is better than AP (patient’s heart is closer to IR). Use a 72-inch (183-cm) source “image receptor distance” (SID) to decrease the magnification of the heart.

4 72 inch SID inch SID

5 CONT… The time of examination, degree of patient elevation( supine semi-upright…) and if done AP should be on the image. Indicating the time of day on the image is especially important if the patient's progress is being followed and multiple chest images are to be taken on the same day. This is done automatically on CR and DR( but is the time right?). Knowledge of the degree of elevation helps the reviewer determine the exact amount of fluid in the patient's lungs. If you use a portable marker you do not need to mark the film AP

6 Structures shown: Entire lung field
An AP projection is somewhat similar to the PA projection. AP being farther from the IR, the heart and great vessels are magnified as well as engorged, and the lung fields appear shorter because abdominal compression moves the diaphragm to a higher level. The clavicles are projected higher, and the ribs assume a more horizontal appearance

7 PA AP Scapulas are in the way!
Remember on the AP the heart and great vessels are magnified and engorged and lungs appear shorter Scapulas are in the way!

8 Upright Supine Heart appears larger
We always try and take a CXR the same way (PA 72 inch with a deep breath in, because distance, PA/AP, inspiration/expiration and supine/upright can all effect the way a chest looks! Heart appears larger

9 Portable Chest: AP Upright

10 Why take a portable CXR? Patient is not stable or too sick to come down stairs Check for position of lines and tubes Check for complications from lines and tubes Sudden onset of chest pain and or shortness of breath To check for a Pneumothorax (upright is best!) Air embolism from line

11 Another way to show air-fluid levels: To demonstrate precise air-fluid levels when pleural effusion is suspected, chest images should be taken with the patient upright and the x-ray beam horizontal. With this position, the air rises and the fluid gravitates to the lowest position, creating an air-fluid separation. This separation is identified as a decrease in density on the image wherever the dense fluid is present in the lung field. The true amount of fluid cannot be discerned on an image unless the fluid is level; in the slanted position the chest may appear to have no fluid. When the patient is supine, the fluid is evenly spread throughout the lung field, preventing visualization of fluid levels. Take all chest x-rays this way! Even on portables!!! Even for line placement!!! Even if your techs don’t

12 The same patient with tube angle and without
With 25 degrees

13 Please: Remove all patient monitoring lines that can be removed or shift them out of the lung field! When patient monitoring lines remain within the lung field, they may obscure lung details or the one line we are looking for. Use a grid whenever possible, especially on larger patients. A grid is not always employed in portable imaging. Why? because it is difficult to ensure that the grid and central ray are aligned accurately, which could lead to grid cutoff. When no grid is used, a lower kVp technique is needed to prevent excessive scatter radiation from reaching the IR and hindering contrast. Although the lower kVp will sufficiently penetrate the lung field, it seldom provides enough penetration to allow visualization of structures within and behind the heart shadow I try and use a grid as much as possible!!! Especially with CR. Why is it important to see behind the heart shadow area?

14 Same patient demonstrating a fluid-type pathologic condition
Non grid Grid

15 When a chest x-ray is used to evaluate the placement of apparatus positioned within the mediastinal region, the heart shadow should be penetrated. The accurate placement of these lines cannot be evaluated without heart penetration. Accomplish this penetration by increasing the kVp. The resulting image will demonstrate a penetrated heart shadow with the thoracic vertebrae, posterior ribs, and chest lines, clearly demonstrated through it. The amount of scatter radiation reaching the IR will also increase, resulting in overall lower image contrast (Gray &UGLY!!) So grid use would be helpful!!!! Sometimes you do what you have to. So always ask why am I taking this is?


17 X-Table Lateral Chest

18 X-table Lateral

19 Just like a lateral chest just done x-table
Still need the entire lung field on Use for post pacemaker patients and babies

20 Pulmonary Apices Positions:
AP axial projection -Lordotic position -Lindbolm method (pt leans backwards to the film) AP axial projection ( pt AP angle tube up) PA axial projection ( pt PA angle tube up) PA axial projection- Lordotic position- Fleischer method (pt leans backwards away from film) Not shown (no pictures in book) Low tech way to see the top of the lungs. We angle pt or the tube

21 Structures shown: Demonstrate the apices free from superimposion of clavicles. Drs looking for lesions, interlobar effusions and pneumothorax

22 AP Axial Lordotic Position
The better AP position is better for heavier patients because they can’t get close enough to the film in the PA position. Have patient take a step away from board and lean back till their shoulders are resting agaist the board.

23 AP Axial

24 PA axial Could be done on expiration! The clavicles are elevated by inspiration and depressed by expiration the apices move little if at all during either phase of respiration

25 Positions: Rt lateral Decubitus (right side down)
Lt lateral Decubitus (left side down) *For fluid: place patient on affected side * For air: place patient on the unaffected side *Trendelenburg helps show fluid levels better * Can be done AP or PA

26 What does it show: Demonstrates the change in fluid position and reveals any previously obscured pulmonary areas or, in the case of pneumothorax (air or gas in the pleural space), the presence of any free air. Done on pts with chest tubes to check fluid levels

27 Right lateral decub chest xray
Just like decub for abdomen let patient sit for 5min to let air rise and fluid drop

28 AP projection, left lateral decubitus position
AP projection, left lateral decubitus position .The arrows indicate the air-fluid level (air on the side up). I would show both sides AP projection, right lateral decubitus position. Arrows showing a fluid level (the down side) . Note the fluid in the lung fissure (arrowhead) If you are doing both decubes do both PA or both AP

29 Obliques of the Chest RAO/LAO: 45 degree obliques demonstrate the side farthest from the IR (LAO shows right side) RPO/LPO:45 degree obliques demonstrate the side closest from the IR (LPO shows the left side)

30 LAO Chest : Demonstrate the side farthest from the IR (right side)
RT side demonstrated

31 LPO Chest: demonstrate the side closest from the IR (left side)
Left side is demonstrated

32 Dual energy Chest Done at SHMC on all PICC Line patients
One exposure (long one) but three images! First image normal chest Second image ribs blurred Third image just bones

33 1 2 3

34 No dual energy try inverting the image (image processing)

35 Stuff in the chest

36 Some lines found in the in chest: Central venous (CV line) catheters also known as Peripherally inserted central catheters (PICC) or Ports , pulmonary arterial line also known as a Swan-Ganz catheter

37 Medial to the anterior border of the first rib
Central venous catheters are inserted into the subclavian vein or a more peripheral vein in the upper extremity are extremely useful for measurement of the central venous pressure (CVP) and for providing a conduit for the rapid infusion of fluid or chronic hyperalimentation. They allow for infusion of substances that are too toxic for peripheral infusion, such as for chemotherapy, total parenteral nutrition, dialysis, or blood transfusions. So that the CVP may be correctly measured, the catheter must be located with in the true central venous system, beyond all the valves, which interfere with direct transmission of the right arterial pressure to the catheter. We would like it to be where the brachiocephlic veins join to form the superior vena cava or within the superior vena cava itself approximately 2 to 3 cm above the right atrial junction Medial to the anterior border of the first rib

38 Tip Here

39 Images taken for CV line placement should demonstrate adequate density and penetration to visualize the line and lung conditions that may result if perforation occurs during line insertion, such as pneumothorax or hemothorax. Not just taken for line placement!!! So try and do upright and do not burn out the lung tissue

40 Complications: Pneumothorax Infections Air embolism Hemorrhage

41 pneumothorax Can you see one area has no lung markings?

42 Catheter with it’s tip in the pleural space
Catheter with it’s tip in the pleural space. A right subclavian catheter, perforated the superior vena cava and eroded into the right pleural space. Note the tip of the catheter projecting beyond the right border of the mediastinum (arrow). The direct infusion of parenteral fluid into the pleural space has led to a large right hydrothorax This is why it is very important to have a x-ray before use!

43 Catheter in the right internal jugular vein.
we see this a lot

44 Broken PICC catheter. The sheared-off portion of the catheter (arrow) is located in the left lower lobe.

45 Pulmonary arterial line (Swan-Ganz catheter): The pulmonary arterial line is similar to the Central venous line but is longer. It is used to measure atrial pressures, pulmonary artery pressure, and cardiac output. The measurements obtained are used to diagnose ventricular failure and monitor the effects of specific medication, exercise, and stress on heart function. The pulmonary arterial line is inserted in the subclavian, internal or external jugular, or femoral vein and is advanced through the right atrium into the pulmonary artery . Images taken for pulmonary arterial line placement should demonstrate adequate density and penetration to visualize the line and mediastinal structures to determine adequate placement and lung conditions that may result if perforation occurs during line insertion, such as pneumothorax or hemothorax.

46 AP CXR demonstrating accurate pulmonary arterial(PA) line placement.
See why it is important to move all over lines out of the way!!! Nice left marker!

47 More things put into a chest:
Endotracheal tube (ET): The ET is a stiff, thick-walled tube that is used to inflate the lungs: They are inserted through the mouth into the trachea as a means of establishing or opening an air way It should be 5-7 cm above the tracheal bifurcation(carina) Why take a cxr? To check for proper placement of tube and to check for pneumonia or pneumothorax 20% go into right main bronchus this will cause collapse of the left lung A tube to high will cause air to enter the stomach, this could cause regurgitation of gastric contents into the lungs, which could lead to aspiration pneumonia. Films taken daily to check for movement Patient could get a tension pneumothorax from the pressure of the ventilation machine. Bilateral breath sounds, symmetric thoracic expansion and palpation of the tube in the sternal notch

48 Distal end of endotracheal tube with cuff deflated (1)
A, Adult endotracheal tube. side hole end hole Tracheotomy tube. ( C, Pediatric endotracheal tube; note the absence of cuff.

49 Anteroposterior mobile chest projection showing trachea (dotted line)
endotracheal tube nasogastric tube carina cardiac monitor wires

50 Carina

51 Proper position of the endotracheal tube
5-7 cm above Carina or Old school 2 inches superior to the carina

52 Poor placement :Intubation of right main-stem bronchus with complete occlusion of the left bronchus causing left lung atelectasis.

53 Check for: Head and neck in the neutral position
With flexion or extension of the neck the tube will move about 2cm The patient is not rotated The patient is breathing okay

54 Still more things put into the chest: Thoracostomy tube (chest tubes)

55 Thoracostomy tube (chest tube): The chest tube is a 1
Thoracostomy tube (chest tube): The chest tube is a 1.25-cm diameter, thick-walled tube that is used to remove fluid or air from the pleural space when it is preventing negative pressure in the intrapleural space from aiding in lung expansion. Failure to remove the fluid or air may result in collapse of the lung. For drainage of air the tube is placed anterosuperiorly within the pleural space, typically at the level of the second or third intercostal space at the midclavicular line . For drainage of fluid the tube is typically placed within the pleural space laterally at the midaxillary line at the level of the fifth or six intercostal space. The side hole of the thoracostomy tube, which is marked by an interruption of the radiopaque identification line, should be placed within the thoracic cavity, medial to the inner ribs. Images taken for (chest tubes) thoracostomy tube placement should demonstrate adequate density and penetration to visualize the radiopaque identification line.

56 Chest tubes radiopaque identification line

57 Pacemaker: The pacemaker is used to regulate the heart rate by supplying electrical stimulation to the heart. This electrical signal will stimulate the heart the needed amount to maintain an effective rate and rhythm. On a PA or anteroposterior (AP) chest image the pacemaker catheter tip should be seen at the apex of the right ventricle . Care should be taken when positioning a patient whose pacemaker was inserted within 24 hours of the examination. Elevation of the left arm should not be done unless surgeon or nurse have given there okay, this is done to prevent dislodging of the pacemaker and catheter. Two views should be done to show tip placement. On a frontal radiograph, the tip often appears to be well positioned. A lateral projection is required to show that the tip is directly posterior in the coronary sinus, rather than in its proper position anterior in the right ventricle. They can be done supine (x-table lateral) if patient is still to sleepy from surgery. At SHMC the nurse or DR will be with the patient. Post pacemaker you should always take two views! Post pacemaker Left arm

58 Fracture of a cardiac pacemaker wire (arrow)
Although electrode fractures have become less common because of the development of new alloys, they are still a significant cause of pacing failure. The usual sites of fracture are near the pulse generator, at sharp bends in the wires, and at the point where the electrodes are inserted into the epicardium.

59 Perforation of the myocardium by an intravenous electrode usually occurs at the time of insertion or during the first few days thereafter. Perforation should be suspected when the pacemaker fails to sense or elicit a ventricular response. Plain radiographs show the electrode tip lying outside the right ventricular cavity Pacemaker tip in coronary sinus. On the frontal projection, the tip of the electrode is angled slightly superiorly, traversing the heart in a higher plane than when it is located in the right ventricle.



Download ppt "Helen Murphy SCC Allied Health Radiology Program"

Similar presentations

Ads by Google