Presentation is loading. Please wait.

Presentation is loading. Please wait.

INFRA RED SPECTROSCOPY A guide for A level students KNOCKHARDY PUBLISHING.

Similar presentations


Presentation on theme: "INFRA RED SPECTROSCOPY A guide for A level students KNOCKHARDY PUBLISHING."— Presentation transcript:

1 INFRA RED SPECTROSCOPY A guide for A level students KNOCKHARDY PUBLISHING

2 INTRODUCTION This Powerpoint show is one of several produced to help students understand selected topics at AS and A2 level Chemistry. It is based on the requirements of the AQA and OCR specifications but is suitable for other examination boards. Individual students may use the material at home for revision purposes or it may be used for classroom teaching if an interactive white board is available. Accompanying notes on this, and the full range of AS and A2 topics, are available from the KNOCKHARDY SCIENCE WEBSITE at... Navigation is achieved by... either clicking on the grey arrows at the foot of each page orusing the left and right arrow keys on the keyboard INFRA RED SPECTROSCOPY

3 CONTENTS Prior knowledge Origins of infra red spectra Vibrations of bonds in molecules The Infra Red spectrophotometer Uses of IR Interpretation of IR spectra Characteristic absorption frequencies Check list INFRA RED SPECTROSCOPY

4 Before you start it would be helpful to… know the names and structures of organic functional groups INFRA RED SPECTROSCOPY

5 Different covalent bonds have different strengths due to the masses of different atoms at either end of the bond. As a result, the bonds vibrate at different frequencies The frequency of vibration can be found by detecting when the molecules absorb electro-magnetic radiation. Various types of vibration are possible. INFRA RED SPECTROSCOPY

6 Different covalent bonds have different strengths due to the masses of different atoms at either end of the bond. As a result, the bonds vibrate at different frequencies The frequency of vibration can be found by detecting when the molecules absorb electro-magnetic radiation. Various types of vibration are possible. Examples include... STRETCHING and BENDING INFRA RED SPECTROSCOPY SYMMETRIC BENDING ASYMMETRIC STRETCHING STRETCH

7 SYMMETRIC STRETCHING BENDING AND STRETCHING IN WATER MOLECULES

8 ASYMMETRIC STRETCHING BENDING AND STRETCHING IN WATER MOLECULES

9 BENDING

10 a beam of infra red radiation is passed through the sample a similar beam is passed through the reference cell the frequency of radiation is varied bonds vibrating with a similar frequency absorb the radiation the amount of radiation absorbed by the sample is compared with the reference the results are collected, stored and plotted The Infra-red Spectrophotometer

11 A bond will absorb radiation of a frequency similar to its vibration(s) The Infra-red Spectrophotometer normal vibrationvibration having absorbed energy

12 IDENTIFICATION OF PARTICULAR BONDS IN A MOLECULE INFRA RED SPECTRA - USES The presence of bonds such as O-H and C=O within a molecule can be confirmed because they have characteristic peaks in identifiable parts of the spectrum.

13 IDENTIFICATION OF PARTICULAR BONDS IN A MOLECULE INFRA RED SPECTRA - USES The presence of bonds such as O-H and C=O within a molecule can be confirmed because they have characteristic peaks in identifiable parts of the spectrum. IDENTIFICATION OF COMPOUNDS BY DIRECT COMPARISON OF SPECTRA The only way to completely identify a compound using IR is to compare its spectrum with a known sample. The part of the spectrum known as the Fingerprint Region is unique to each compound.

14 Infra-red spectra are complex due to the many vibrations in each molecule. Total characterisation of a substance based only on its IR spectrum is almost impossible unless one has computerised data handling facilities for comparison of the obtained spectrum with one in memory. However, the technique is useful when used in conjunction with other methods such as nuclear magnetic resonance (nmr) spectroscopy and mass spectroscopy. Peak position depends on bond strength masses of the atoms joined by the bond strong bonds and light atomsabsorb at lower wavenumbers weak bonds and heavy atoms absorb at high wavenumbers INFRA RED SPECTRA - INTERPRETATION

15 Vertical axisAbsorbance the stronger the absorbance the larger the peak Horizontal axisFrequencywavenumber (waves per centimetre) / cm -1 Wavelengthmicrons (m); 1 micron = 1000 nanometres INFRA RED SPECTRA - INTERPRETATION

16 FINGERPRINT REGION organic molecules have a lot of C-C and C-H bonds within their structure spectra obtained will have peaks in the 1400 cm -1 to 800 cm -1 range this is referred to as the fingerprint region the pattern obtained is characteristic of a particular compound the frequency of any absorption is also affected by adjoining atoms or groups.

17 IR SPECTRUM OF A CARBONYL COMPOUND carbonyl compounds show a sharp, strong absorption between 1700 and 1760 cm -1 this is due to the presence of the C=O bond

18 IR SPECTRUM OF AN ALCOHOL alcohols show a broad absorption between 3200 and 3600 cm -1 this is due to the presence of the O-H bond

19 IR SPECTRUM OF A CARBOXYLIC ACID carboxylic acids show a broad absorption between 3200 and 3600 cm -1 this is due to the presence of the O-H bond they also show a strong absorption around 1700 cm -1 this is due to the presence of the C=O bond

20 IR SPECTRUM OF AN ESTER esters show a strong absorption between 1750 cm -1 and 1730 cm -1 this is due to the presence of the C=O bond

21 WHAT IS IT! O-H STRETCH C=O STRETCH O-H STRETCH C=O STRETCH AND ALCOHOL ALDEHYDE CARBOXYLIC ACID One can tell the difference between alcohols, aldehydes and carboxylic acids by comparison of their spectra.

22 O-HC=OC-O N-H Aromatic C-CC-H C=CC-C alkanes C N C-Cl CHARACTERISTIC FREQUENCIES

23 BondClass of compoundRange / cm -1 Intensity C-HAlkane strong C-CAlkane weak C=CAlkene variable C=OKetone strong Aldehyde strong Carboxylic acid strong Ester strong Amide strong C-OAlcohol, ester, acid, ether strong O-HAlcohol (monomer) variable, sharp Alcohol (H-bonded) strong, broad Carboxylic acid (H-bonded) variable, broad N-HAmine, Amide3500 (approx)medium C NNitrile medium C-XChloride strong Bromide strong Iodide500 (approx)strong CHARACTERISTIC ABSORPTION FREQUENCIES

24 REVISION CHECK What should you be able to do? Understand the origin of IR spectra Identify peaks associated with O-H and C=O bonds Contrast the spectra of alcohols, carbonyls and carboxylic acids CAN YOU DO ALL OF THESE? YES NO

25 You need to go over the relevant topic(s) again Click on the button to return to the menu

26 WELL DONE! Try some past paper questions

27 © 2004 JONATHAN HOPTON & KNOCKHARDY PUBLISHING INFRA RED SPECTROSCOPY THE END


Download ppt "INFRA RED SPECTROSCOPY A guide for A level students KNOCKHARDY PUBLISHING."

Similar presentations


Ads by Google