Presentation is loading. Please wait.

Presentation is loading. Please wait.

E-ELTs View of Stellar Environments Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST,

Similar presentations


Presentation on theme: "E-ELTs View of Stellar Environments Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST,"— Presentation transcript:

1 E-ELTs View of Stellar Environments Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortium AO4ELT3 CONFERENCE. FLORENCE, ITALY, 26-31 MAY 2013

2 Outline E-ELTs View of Stellar Environments I- The E-ELT project Telescope, Discovery Window, Other Projects Instrumentation Road Map II- Stellar Environments Disks Exoplanets Evolved Stars

3 40-m class telescope: largest optical- infrared telescope in the world. (GMT = 25m; TMT = 30m) Segmented primary mirror. Adaptive optics assisted telescope. Diffraction limited performance: 12mas@K-band Wide field of view: 7arcmin. Mid-latitude site (Amazones/Chile). Fast instrument changes. VLT level of operations efficiency. The E-ELT Project The Telescope

4 50m2 400m2 600m2 1200m2(JWST: 25m2) 2 µm50mas 18mas 14mas 10mas(JWST: 68mas) E-ELT & other competitive projects Discoveries by opening a new parameter space Increased Sensitivity Spatial resolution (10 mas scale ) The E-ELT Project

5 - VLT & VLTI 2 nd & 3 rd generation PRIMA, K-MOS, SPHERE, MUSE, ESPRESSO, GRAVITY… 201220142016201820202022202420262028 - GAIA - GMT - Cheops - JWST - EChO/PLATO/FINESS? Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP… Timeline: current/future missions - ALMA (ACA) - E-ELT - TMT Space: Spitzer, Herschel, Kepler, CoRoT - SKA The E-ELT Project - TESS

6 Instruments - First Light AOModeλ (µm)ResolutionFoV / SamplingAdd. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4BB, NB 3000 53.0 / 3 masAstrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU0.5 – 2.44000 10 000 20 000 0.5×1.0 / 4mas 5.0×10.0 / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3 - 5 BB, NB 5000 100 000 18 / 12 mas 0.4×1.5 / 4 mas Coronography Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82 0.027×0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAOEPOL IFS 0.6 – 0.9 0.95 – 1.65125 – 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Coronography Polarimetry Instrument Roadmap The E-ELT Project

7 Instruments - First Light AOModeλ (µm)ResolutionFoV / SamplingAdd. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4BB, NB 3000 53.0 / 3 masAstrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU0.5 – 2.44000 10 000 20 000 0.5×1.0 / 4mas 5.0×10.0 / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3 - 5 BB, NB 5000 100 000 18 / 12 mas 0.4×1.5 / 4 mas Coronography Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82 0.027×0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAOEPOL IFS 0.6 – 0.9 0.95 – 1.65125 – 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Coronography Polarimetry Instrument Roadmap The E-ELT Project 1st Light Instruments SCAO: single-conjugated AOMCAO: Multi-Conjugated-AOLTAO: Laser-Tomographic AO MOAO: Multi-Object AOXAO: Extreme-AO

8 Instruments - First Light AOModeλ (µm)ResolutionFoV / SamplingAdd. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4BB, NB 3000 53.0 / 3 masAstrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU0.5 – 2.44000 10 000 20 000 0.5×1.0 / 4mas 5.0×10.0 / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3 - 5 BB, NB 5000 100 000 18 / 12 mas 0.4×1.5 / 4 mas Coronography Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82 0.027×0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAOEPOL IFS 0.6 – 0.9 0.95 – 1.65125 – 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Coronography Polarimetry Instrument Roadmap The E-ELT Project 2 nd Pool Instruments SCAO: single-conjugated AOMCAO: Multi-Conjugated-AOLTAO: Laser-Tomographic AO MOAO: Multi-Object AOXAO: Extreme-AO

9 Instruments - First Light AOModeλ (µm)ResolutionFoV / SamplingAdd. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4BB, NB 3000 53.0 / 3 masAstrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU0.5 – 2.44000 10 000 20 000 0.5×1.0 / 4mas 5.0×10.0 / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3 - 5 BB, NB 5000 100 000 18 / 12 mas 0.4×1.5 / 4 mas Coronography Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82 0.027×0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAOEPOL IFS 0.6 – 0.9 0.95 – 1.65125 – 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Coronography Polarimetry Instrument Roadmap The E-ELT Project XAO Instrument SCAO: single-conjugated AOMCAO: Multi-Conjugated-AOLTAO: Laser-Tomographic AO MOAO: Multi-Object AOXAO: Extreme-AO

10 Instruments - First Light AOModeλ (µm)ResolutionFoV / SamplingAdd. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4BB, NB 3000 53.0 / 3 masAstrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU0.5 – 2.44000 10 000 20 000 0.5×1.0 / 4mas 5.0×10.0 / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3 - 5 BB, NB 5000 100 000 18 / 12 mas 0.4×1.5 / 4 mas Coronography Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82 0.027×0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAOEPOL IFS 0.6 – 0.9 0.95 – 1.65125 – 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Coronography Polarimetry Instrument Roadmap The E-ELT Project Various AO Flavors SCAO: single-conjugated AOMCAO: Multi-Conjugated-AOLTAO: Laser-Tomographic AO MOAO: Multi-Object AOXAO: Extreme-AO

11 Instruments - First Light AOModeλ (µm)ResolutionFoV / SamplingAdd. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4BB, NB 3000 53.0 / 3 masAstrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU0.5 – 2.44000 10 000 20 000 0.5×1.0 / 4mas 5.0×10.0 / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3 - 5 BB, NB 5000 100 000 18 / 12 mas 0.4×1.5 / 4 mas Coronography Polarimetry E-HIRES - 2024/2028 SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82 0.027×0.5 Polarimetry E-MOS - 2024/2028 MOAO Slits IFUs 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8 / 0.1 420 / 0.3 2 / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2027/2030 XAOEPOL IFS 0.6 – 0.9 0.95 – 1.65125 – 20 000 2.0 / 2.3 mas 0.8 / 1.5 mas Coronography Polarimetry Instrument Roadmap The E-ELT Project Science Priority / Stellar Environments LowMediumHigh

12 Outline E-ELTs View of Stellar Environments I- The E-ELT project Telescope, Discovery Window, Other Projects Instrumentation Road Map II- Stellar Environments Disks Exoplanets Evolved Stars

13 Stellar Environments 1/ Circumstellar Disks Artists View ESO-PR-0942

14 1/ Disks Key Scientific Questions. Star/disk Evolution o Accretion, photo-evaporation, o Jets & Winds o Magnetic Fields. Disk Structure & Dynamics (Gas & Dust). Chemistry: Water & Organics in Planet-Forming Zones. Planetary Formation o Initial conditions. Planets/Disk interactions Fomalhaut ALMA/HST Bowler et al. 12

15 Probing Planet-forming Regions snow line E-MIDIRVLT/CRIRES E-IFU, E-HIRES 1/ Disks ALMA 1 L sun @100 pc Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr E-ELT : 10 mas x 100pc = 1 AU

16 Co-rotation radius Magnetospheric radius dust sublimation crystallization snow line E-MIDIRVLT/CRIRES E-IFU, E-HIRES 1/ Disks ALMA 1 L sun @100 pc Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr Spectro-astrometry Star – disk interactions E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU

17 Zanni & Ferreira 09 E-IFU, E-HIRES & E-MIDIR Star – disk interactions MHD star – disk simulations R/Ro 1/ Disks E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro Star/Disk evolution under the microscope… Geometry of Accretion Channels Inner Disk Properties (Warp, asymmetries…) Role of Magnetic Fields (Config., Reconnection) Jet Launching Zone, Stellar & Disk Winds

18 Proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr) Gap at 18 AU (sub-mm continuum emission Brown e al. 07) E-ELT-MIDIR simulations of 12 CO line emission at 4.7µm of SR21. o Left: Continuum subtracted and velocity channel co-added o Right: Velocity map with a resolving power of 100 000 (3 km/s) 32 AU Gas Dynamics in planet-forming zones E-MIDIR 1/ Disks

19 Water & Organics Distribution and Dynamics Disk cooling & Planetesimals formation Organic/Prebiotic chemistry (CH4, C2H2, HCN…) Isotopic Fractionation Transfer to Terrestrial Planets E-MIDIR. Keck-NIRSPEC. high HRS (R = 25 000) in L-band.. Detection of H20 and OH radicals MIR lines. Hot (800K) water from the inner AUs DR Tau, AS 205 N; Salyk et al. 08 1/ Disks Gas Dynamics in planet-forming zones

20 Asymmetries/Spirals in proto-planetary disks E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mJy/as2 at 0.1-0.2 (10 – 20 AU) ELT-MIR very competitive with JWST Observing the Dusty Disk Structures 1/ Disks E-MIDIR

21 1/ Disks E-MIDIR Asymmetries/Spirals in proto-planetary disks E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mJy/as2 at 0.1-0.2 (10 – 20 AU) ELT-MIR very competitive with JWST Observing the Dusty Disk Structures

22 1/ Disks E-MIDIR Asymmetries/Spirals in proto-planetary disks E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mJy/as2 at 0.1-0.2 (10 – 20 AU) ELT-MIR very competitive with JWST Observing the Dusty Disk Structures

23 E-MIDIR 1/ Disks Asymmetries/Spirals in proto-planetary disks E-MIDIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU (@100pc) from G-star, Gap detection at a few mJy/as2 at 0.1-0.2 (10 – 20 AU) ELT-MIR very competitive with JWST Observing the Dusty Disk Structures

24 Stellar Environments 2/ Exoplanets Artists View ESO-PR-1106

25 2/ Exoplanets Key Scientific Questions. Architecture of Exoplanetary Systems?. Formation & Evolution Processes. How does it depend on the Host properties? (Mass, Age, Composition…). How frequent are the Telluric planets in the HZ?. Physics & Atmosphere of Exoplanets? (Telluric & Giant). Bio-Signatures Discovery & Conditions favorable for Life?

26 Expected planet population detected by Doppler spectroscopy with: o HARPS on the ESO 3.6-metre (precision 1 ms1), 2/ Exoplanets Exploration of Telluric Planets observed corrected Predicted (Mordasini et al. 09) Observed (Mayor et al. 11)

27 Expected planet population detected by Doppler spectroscopy with: o HARPS on the ESO 3.6-metre (precision 1 ms1; left), o ESPRESSO on the VLT(precision 10 cms1; middle) o and HIRES on the E-ELT(precision 1 cms1; right). > HIRES, required to detect Earth-like planets in HZ of solar-type stars 2/ Exoplanets E-HIRES Exploration of Telluric Planets

28 Simulations: 1.8 M Earth Exo-Earth in HZ (P=145 days) around a bright and low-activity K1V star. RV precision: 2cm/s. Limitations: instr. noise, stellar oscillations, granulation and activity. Detailed observing strategy: 3 meas./night, every 3 nights over 8 months Periodogram: 3σ detection (red) 2/ Exoplanets Twin Earth Discovery E-HIRES

29 2/ Exoplanets E-HIRES, E-MIDIR, E-PCS Planetary Atmospheres Reflected, Transmitted or Emitted light of Exoplanets Strongly or non-strongly irradiated planets Physics of Planetary Atmospheres (Giant, Exo-Neptunes to Super-Earths) - Geometric Albedos - Chemical Composition (H20, CH4, CO, CO2, NH3…) - Atmospheres Dynamics. Inversion,. Vertical Mixing,. Circulation,. Evaporation, Imprints of Formation Mechanisms? Knutson et al. 09 Spitzer No Thermal Inversion Thermal inversion

30 E-IFU, E-MIDIR, E-PCS 2/ Exoplanets Imaging Planetary Systems HR8799; Marois et al. 10Bpic; Lagrange et al. 10 Physics of Giant Planets (down to Super-Earths) Observables: Luminosity, Teff & Gravity Atmospheric properties Orbital properties: a, e, i, Complementarity RV, Astr… > Access Dynamical Mass

31 SPHERE E-PCS GAIA Mesa et al. 11 Kasper et al. 10 Lattanzi & Sozzetti 10 E-IFU/MIDIR E-IFU, E-MIDIR, E-PCS 2/ Exoplanets Imaging Planetary Systems Physics of Giant Planets (down to Super-Earths) Observables: Luminosity, Teff & Gravity Atmospheric properties Orbital properties: a, e, i, Complementarity RV, Astr… > Access Dynamical Mass

32 Physics of Giant Planets (down to Super-Earths) Observables: Luminosity, Teff & Gravity Atmospheric properties Orbital properties: a, e, i, Complementarity RV, Astr… > Access Dynamical Mass Formation/Evolution Theories L – Mass Relation Gas Accretion Phase E-IFU, E-MIDIR, E-PCS 2/ Exoplanets Imaging Planetary Systems Accretion Shock No Accretion Shock Mordasini et al. 12

33 E-IFU, E-MIDIR, E-PCS 2/ Exoplanets Imaging Planetary Systems Physics of Giant Planets (down to Super-Earths) Observables: Luminosity, Teff & Gravity Atmospheric properties Orbital properties: a, e, i, Complementarity RV, Astr… > Access Dynamical Mass Formation/Evolution Theories L – Mass Relation Gas Accretion Phase Planetary System Architecture Dynamical stability Planet-disk interactions Bpic b; ESO PR 0842

34 Stellar Environments 3/ Evolved Stars Eta Car (HST/WFPC2) VLT/NaCo (L, Bra, Pfg) N. Smith/NASA Chesneau et al. 08 1

35 3/ Evolved stars Environments Disks, Outflows and Shocks Structure & Physical conditions (Excitation, kinematics, density, temperature). Interacting binary systems: cataclysmic variables and symbiotic systems Archeology of Planetary systems > Photospheric abundances of polluted white dwarfs > Fe, Si, Ca, C, O, Mg abundances Frequency of terrestrial planet building Bulk chemistry of solid planetary bodies Mass constraints for exoplanetary building blocks Frequency of water-rich exo-asteroids Constraints on habitable environments Farihi et al. 2010

36 Conclusions Stellar environments under the Microscope > Unique Spatial resolution & sensitivity > Offering a versatile instrumentation (wavelengths coverage, modes, spatial/spectral resolution…) > Will count on new discoveries (ALMA, SPHERE, GPI, GAIA, TESS...) > Mostly aimed at Characterizing, but not only… Incredible Machine for Disks, Exoplanets & Evolved stars > Star/Disk Evolution Processes > Disk Structure, Composition & Chemistry (Water & Organics) > Gas/Dust components in planet-forming Regions > Telluric and Giant Planets Characterization (frequency, physics, atmosphere & formation) > Twin Earth in RV & Imaging Super-Earths > Conditions favorable for Life

37

38 E-IFU, E-HIRES & E-MIDIR. VLT/CRIRES, CO emission lines at 4.7µm (< 2 AU) AS 205 N, Pontopiddan et al. 11 1/ Disks Star – disk interactions E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro Star/Disk evolution under the microscope… Geometry of Accretion Channels Inner Disk Properties (Warp, asymmetries…) Role of Magnetic Fields (Config., Reconnection) Jet Launching Zone, Stellar & Disk Winds


Download ppt "E-ELTs View of Stellar Environments Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST,"

Similar presentations


Ads by Google