Presentation is loading. Please wait.

Presentation is loading. Please wait.

3D Vortices in Stratified, Rotating, Shearing Protoplanetary Disks April 8, 2005 - I PAM Workshop I: Astrophysical Fluid Dynamics Philip Marcus – UC Berkeley.

Similar presentations


Presentation on theme: "3D Vortices in Stratified, Rotating, Shearing Protoplanetary Disks April 8, 2005 - I PAM Workshop I: Astrophysical Fluid Dynamics Philip Marcus – UC Berkeley."— Presentation transcript:

1 3D Vortices in Stratified, Rotating, Shearing Protoplanetary Disks April 8, I PAM Workshop I: Astrophysical Fluid Dynamics Philip Marcus – UC Berkeley Joe Barranco – KITP UCSB Xylar Asay-Davis – UC Berkeley Sushil Shetty – UC Berkeley Numerical Simulations of

2 Observations of Protoplanetary Disks Mass 0.01 – 0.1 M sun Diameter 100 – 1000 AU Age 10 million years

3 Fluid Dynamics (along with radiation) Determines Transport Properties Angular momentum Dust Grains Migration of Planetesimals and Planets No observations of turbulence or fluid structures (yet)

4 Big Picture What Does a PPD Look Like? Is it laminar or turbulent – is it both? Is the mid-plane filled with vortices? Are vortices long-lived or transient? Is there an energy cascade? Is it a 2D environment? Is a Keplerian disk stable? Can energy be extracted from the mean shear? Are there pure hydro mechanisms at work?

5 Eddy Viscosity eddy * Replace the nonlinear, and difficult-to calculate advective term – (V ¢ r )V with a ficticious, linear, easy-to-calculate diffusion r ¢ eddy r V. * Set eddy = c s H 0 (Shakura & Sunyaev 1973) < 1 because turbulent eddies are probably subsonic and not larger than a scale height H 0 in extent. Origin of turbulence? Shear instabilities, convection, MHD instabilities … etc. * Parameterize angular mom. transfer and/or rate of mass accretion in terms of

6 Does work for Angular Momentum Transport (or anything else) ? Perhaps with heat transfer in non-rotating, ( r ¢ V), non-shearing flows such as thermal convection, e.g., Prandlt mixing-length theory. Runs into problems when used for transporting vectors quantities and when there is competition among advectively conserved quantities. e.g., Spherical Couette Flow Do not violate Ficks Law. Angular momentum angular must be transported radially outward from a forming protostar; yet the disks ang. mom. increases with radius.

7 Formation of Planetesimals 2 Competing Theories –Binary Agglomeration: Sticking vs. Disruption? –Gravitational Instability: Settling vs. Turbulence? Toomre criterion: v d < πGΣ d /Ω K 10 cm/s mm grains km planetesimals

8 Transport Implied by Hot Jupiters Formed farther out in the disk where it was cooler, and then migrated to present location. Type I Migration: Small protoplanet raises tides in the disk, which exert torques on the planet. Type II Migration: Large protoplanet opens gap in the disk; both gap and protoplanet migrate inward on slow viscous timescale.

9 Vortices in Protoplanetary Disks? Anticyclonic shear leads to anticyclonic vortices

10 Vortices in Protoplanetary Disks? Recipe for vortices: Rapid rotation Intense shear Strong stratification

11 Assumptions for PPD Flow (being, or about to be, dropped) Disk is Cold: Pressure small, so is radial pressure gradient Gas is un-ionized and therefore not coupled to magnetic field Sound speed c s ¿ Keplerian velocity V K Cooling modeled as T / t = – T/ cool where is fixed.

12 Base Flow in Protoplanetary Disk Near balance between gravity and centrifugal force: Anticyclonic Shear No hydrostatic balance in the radial direction!

13 Base Flow in Protoplanetary Disk (and pre-computational bias) Vertical hydrostatic balance:Cool, thin disk:

14 Vortices in Protoplanetary Disks Shear will tear a vortex apart unless: –Vortex rotates in same sense as shear. In PPD, vortices must be ANTICYCLONES. –Strength of the vortex is at least of the same order as the strength of the shear. ω V ~ σ k ~ Ω k Ro ω z /2Ω k ~ 1

15 Vortices in Protoplanetary Disks Velocity across vortex likely to be subsonic; otherwise shocks would rapidly dissipate kinetic energy of vortex: –V ~ σ k L < c s –V ~ Ω k L < c s –ε V/c s ~ (Ω k /c s ) L < 1 –But from hydrostatic balance: c s ~ Ω k H –ε V/c s ~ L/H < 1

16 PPD vs. GRS TimescalesGRSPPD sh ´ 2 / ¼ 8 d. ¼ 1 y. rot ´ 2 / ¼ 26 h. ¼ 1 y. bv ´ 2 / bv ¼ 6 m. ¼ 1 y. Rossby Ro ´ rot / sh ¼ 0.13 ¼ 1 Froude Fr ´ bv / sh ¼ 5 £ ¼ 1 Richardson ´ 1/Fr 2 ¼ 4 £ 10 6 ¼ 1 Wave speeds: c g / c s ¼ 1

17 Equations of Motion Momentum: With Coriolis and Buoyancy Divergence: Anelastic Approximation Temperature: With Pressure-Volume Work

18 Two-Dimensional Approx. is not correct and misleading Too easy to make vortices due to limited freedom, conservation of and inverse cascade of energy

19 Computational Method Cartesian Domain: (r,,z) (x,y,z) –Valid when H 0 /r 0 << 1 and r/r 0 << 1 3D Spectral Method –Horizontal basis functions: Fourier-Fourier basis for shearing box; Chebyshev otherwise –Vertical basis functions: Chebyshev polynomials for truncated domain OR Cotangent mapped Chebyshev functions for infinite domain Parallelizes and scales

20 Spectral Methods Are Not Limited to Cartesian boxes Limited to Fourier series Limited to linear problems Impractical without fast transforms

21 Spectral Methods Beat 2 nd order f.d. by ~ 4 per spatial dimension for 1% accuracy, (4 ) 2 for 0.1% Often have diagonalizable elliptic operators Non-dissipative & dispersive – must explicitly put in Have derivative operators that commute 2 / x 2 = ( / x) ( / x) Should not be used with discontinuities

22 Tests of the Codes Energy, momentum, enstrophy and p.v. balance Linear eigenmodes Agrees with 2D solutions – Taylor Columns Agrees with 3D asymptotics (equilibria) Different codes (mapped, embedded and truncated) agree with each other Gave unexpected results for which the algorithms were not tuned

23 Sliding box: shear =(-3/2) r t=L x / r t=0 LxLx

24 Open Boundaries or 1 Domain Mapping - 1 < z < 1 ! 0 < < Arbitrary truncation to finite domain impose arbitrary boundary conditions Embedding -L domain < -L physical < z < L physical < L domain

25 Mappings z = L cos( ) Chebyshev z = L cot( ) Others: Matsushima & Marcus JCP 1999 Rational Legendre for cylindrical coordinate at origin and harmonic at 1

26 Embedding Domain of physical interest Buffer region L embedding -L embedding L physical Lose 1/3 of points in buffer regions

27 No Free Lunch Mappings lose 1/3 of the points for |z| > L advantage is (maybe) realistic b.c. Truncations waste 1/3 of the points due to clustering at the artificial boundary Embeddings lose 1/3 of the points at L physical < |z| < L embedding

28 Internal Gravity Waves Breaking: h i / exp{-z 2 /2H 0 2 } (Gaussian) Energy flux ~ h i V 3 /2 Huge energy source (locally makes slug flow of Keplerian, differential velocity) Source of perturbations is oscillating vortices Fills disk with gravity waves Waves are neutrally stable Gravity / z, stratification / z ! Brunt-Vaisalla frequency / z For finite z domain (-L < z < L) there are wall- modes / exp{+z 2 /2H 0 2 }

29 Gravity Wave Damping 1 V x / t = V y / t = V z / t = - h / z + g T/ h T i T / t = - (d h S i / dz) ( h T i /c p ) V z - T/ cool 2 V z / t 2 = - (d h S i / dz) (g/c p ) V z

30 Gravity Wave Damping 1 V x / t = V y / t = V z / t = - h / z + g T/ h T i – T/ t T / t = - (d h S i / dz) ( h T i /c p ) V z – V z / t - T/ cool 2 V z / t 2 = - (d h S i / dz) (g/c p ) V z /( ) + [ (d h S i / dz) ( h T i /c p ) (g/ h T i ) ] V z / t

31 What does 2D mean? Columns or pancakes?

32 Tall Columnar Vortex

33 Vortex in the Midplane of PPD Blue Blue = Anticyclonic vorticity, Red = Cyclonic vorticity Ro = Ã r 0 = 4H 0 ! Ã r = 2H 0 !

34 z plane at r=r 0 Ro = Blue Blue = Anticyclonic vorticity Red = Cyclonic vorticity à z = 8H 0 ! à r 0 = 4H 0 !

35

36

37

38

39 r z plane at =0 Ro = Blue Blue = Anticyclonic vorticity Red = Cyclonic vorticity à z = 8H 0 ! à r = 2H 0 !

40

41

42

43 z = 1.5 H 0 z = 1.0 H 0 z = 0 H 0

44 Spontaneous Formation of Off-Midplane Vortices

45 3D Vortex in PPD

46 Equilibrium in Horizontal Horizontal momentum equation: For Ro · 1, Geostophic balance between gradient of pressure and the Coriolis force. Anticyclones have high pressure centers. For Ro À 1, low pressure centers. High Pressure Coriolis Force v?v? z

47 Role of v z In sub-adiabatic flow: rising cools the fluid while sinking warms it. This in turn creates cold, heavy top lids and warm, buoyant bottom lids. This balances the vertical pressure force (and has horizontal temperature gradients in accord with the thermal wind equation. Numerical calculations show that after lids are created, v z ! 0. Magnitude of v z is set by dissipation v?v? z vzvz rate, the faster of cool or advective cooling.

48 Radial Cascade of Vortices Internal gravity waves or small velocity perturbations with v z, or that create v z at outer edge of disk

49 Radial Cascade of Vortices Anticlonic bands embedded in like-signed shear flow are unstable and break up into stable vorices Cyclonic bands embedded in the opposite- signed Keplerian shear are stable Energy provided by step-functioning the linearly stable background shear flow arcus JFM Coughlin & arcus PRL

50 Radial Cascade of Vortices Create Radial bands of z V x / t = V y / t = D z / D t = (baroclinic) - (2 + + z ) (v z /H) V z / t = T / t =

51 Radial Cascade of Vortices New vortex wobbles in shear ambient flow (3D Kida ellipse) Produces new gravity waves, characterized by T, and more importantly v z

52 One Test of Picture Add gravity wave damping mechanism at just one thin radial band Stops Cascade

53 Angular Momentum Transport Fore-Aft symmetry: Transport / h V r V i r V r ( ) = -V r (- ) V ( ) = +V (- )

54 t/ ORB

55

56 Grain Trapping in Vortices Grains feel Coriolis, centrifugal, gravity (from all sources) and gas drag forces. Stokes Drag Stopping Time (or use Epstein for r grain < mean free path ' 1cm at 1AU): At 1 AU:

57 Why dont grains centrifuge out of vortices?

58 Grain Trapping in 2D Vortices τSτS The attractors here are all limit cycles not points

59 Dust Dynamics Attracting Regions

60 Conclusions Disk filled with off-mid-plane vortices and waves Vortices are unstable in the midplane (where the stratification vanishes) Vortices thrive off the midplane (where there is stratification) Vortices from spontaneously from noise and draw their energy from the Keplerian shear. Vortices transport angular momentum radially outward Vortices capture and concentrate dust grains

61 Future Work MRI Formation Mechanisms –Spin-up of temperature & density lumps –Inverse cascade (small vortices merging into larger vortices) –Turbulence between vortices or laminar? Dust dynamics –Grain collision rates & velocities –Gravitational settling & instability –2-Fluid Model Mass, Angular Momentum, Planetesimal Transport

62 Conclusions Accretion Disk Vortices appear to be non-isolated Fore-Aft symmetry breaking important for transport of angular momentum Large V z affects dust accumulaton Dust grains trap in 3D vortices –Dust densities can be enhances at least to dust ~ gas Future work Simulate back-reaction of dust on gas –Dust can be modeled as continuous fluid without pressure Simulate particles in full turbulent flow Questions & Future Work Time scales for MERGE and FORM (isolated vortices?) Understand why time-average h V r V i > 0 * *

63 Conclusions Scaling for agrees with CFD for both planetary and accretion disk vortices over a wide range of parameters. v z is set by dissipation time scale(s). Aspect ratio (L ? /H) for both planetary and disk vortices set by ( break-up / )( /H) 1/2. Scaling shows that planetary and accretion disk vortices obey same physics and scaling laws.

64 Particle Trapping Vortex traps grains with r grain < r max r max / v z,max / 1/ {mixing} This simulation: r max ~ 1 mm Stable orbits: fixed point or limit cycles

65 Dust Grains (Particle-laden Flow) Forces on the dust –Coriolis –Centrifugal –Gravity –Gas drag (steady state vortex) Drag laws for locally laminar flows –Stokes: D = C D, S gas c s r grain v –Epstein: D = C D, S gas c s r 2 grain v For R = 1 AU ~ 150 Million km: – ~ 1 cm –r grain < 1 cm ! Epstein regime Size parameterized by stopping time s ´ gas c s / ( grain r)

66

67 Eddy Viscosities Replace the nonlinear advective terms $-{\bf v} \cdot \nabla {\bf v}$ with a linear diffusion $\nabla \cdot nabla {\bf v}$ ngular momentum problem: In order for mass to spirlal inward onto the growing protostar, angular momentum must be transported outward. Viscous torques in a differentially rotating disk? –Timescale: visc ¼ R 2 / » years! –Couple orders of magnitude longer than age of universe! Shakura-Sunyaev (1973): Re = VL/ » … perhaps turbulence enhances the effective viscosity: – turb = H 0 c s – < 1 because turbulent eddies are probably subsonic and no larger than a scale height in extent. Origin of turbulence? Nonlinear shear instabilities, convection, MHD instabilities…

68 Dust Dynamics Horizontal grain dynamics are complex –See, e.g. Barranco and Marcus (2000), Chavanis (1999) –Trapping if vortex isnt rotating too fast and grains are not too heavy Vertical dynamics not previously studied –Particles establish orbits where Drag ¼ –Weight –v z / s (z) = g = const. ¢ z –Dust sorted vertically by size (weight)

69 Long-lived, Compact, 3-D Vortices Rare in laboratory and engineering flows. –Short lived in 3-D. (Kolmogorov ) coherence time = turn-around time). –Long-lived vortices are common in 2-D. (vortex mergers, inverse cascade, infinitely many conserved quantities). Important examples in Geophysical and Astrophysical Systems with –Strong rotation (Rossby Number Ro ´ z / · 1). –Background shear ( z / ). –Stable stratification (N/ ).

70 Two Disparate Examples Planetary vortices. –Jupiters Great Red Spot, White Ovals, etc. –Earths Antarctic Polar Vortex. Vortices in H 2 disk around a protostar. v z ¿ v ? L?L? LzLz v z » v ? LzLz L?L? L ? À L z L ? < L z

71 z = 0z = H

72 Keplerian gas and dust around a Protostar Gravity approximately linear in z: Vertical hydrostatic balance – pressure and density / exp(-z 2 /(2 H 2 )) In rotating frame local shear = -3/2 Protoplanetary disk


Download ppt "3D Vortices in Stratified, Rotating, Shearing Protoplanetary Disks April 8, 2005 - I PAM Workshop I: Astrophysical Fluid Dynamics Philip Marcus – UC Berkeley."

Similar presentations


Ads by Google