Download presentation

Presentation is loading. Please wait.

Published byEmely Weatherall Modified over 3 years ago

1
INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011

2
QUIZ 3 The Turing Machine M decides the language L if: M accepts all w L and rejects all w L. The language L is Turing-recognizable if: There is a TM that recognizes L (accepts all and only the strings in L). The language L is undecidable if: There is no TM that decides it.

3
QUIZ 3 x a ƒ(x)?b ƒ(x)?c ƒ(x)? anoyesno byesnoyes cno yes DYes No

4
QUIZ 3 b R R q a? aba to_endba

5
UNDECIDABLE PROBLEMS D TM = { M | M is a TM that does not accept M } Theorem. D TM is undecidable. Proof. Suppose machine N decides D TM. Then N accepts N N D TM N does not accept N A TM = { M,w | M is a TM that accepts on input w } Theorem. If A TM is decidable, so is D TM. Proof. If ¬A TM is decided by the program nAccept we can decide D TM by calling nAccept(M, M ). Theorem. If HALT TM is decidable, then so is A TM. HALT TM = { M,w | M is a TM that halts on input w }

6
In most cases, we show that a language is undecidable by showing that if it is decidable, then so is A TM. We reduce deciding A TM to deciding the language in question

7
MAPPING REDUCIBILITY ƒ : Σ* Σ* is a computable function if some Turing machine M, for any input w, halts with just ƒ(w) on its tape A language A is mapping reducible to language B, written A m B, if there is a computable function ƒ : Σ* Σ*, where for every w, w A ƒ(w) B ƒ is called a reduction from A to B.

8
A B ƒ ƒ MAPPING REDUCIBILITY w A ƒ(w) B Σ*Σ*Σ*Σ*

9
Theorem: If A m B and B is decidable, then A is decidable Proof: Let BSolver be a program to decide B and let ƒ be a reduction from A to B We build a machine ASolver that decides A: ASolver(w): 1. Let s = ƒ(w) 2. Return BSolver(s)

10
Corollary: If A m B and A is undecidable, then B is undecidable Proof: Suppose, for contradiction, that BSolver decides B and let ƒ be a reduction from A to B. The same machine ASolver decides A: ASolver(w): 1. Let s = ƒ(w) 2. Return BSolver(s) Since A is undecidable the program BSolver must not exist. Thus B is undecidable.

11
Theorem: If A m B and B m C, then A m C Proof: Let ƒ : A B and g : B C be computable functions, where w A ƒ(w) B, x B g(x) C We build a computable mapping h by setting h(w) = g(ƒ(w)). h is a reduction from A to C: h is computable, since ƒ and g are computable. w A ƒ(w) B g(ƒ(w)) = h(w) C

12
THE PCP GAME ba a a ab b bcb b a ba a a ab

13
a aa aaa a a c a aa c a aaa a a aa

14
a ab ca a b a ab abc c a ab b ca a abc c

15
ca a acc ca abc ab

16
aab aa acc a b b c a caa a b b

17
POST CORRESPONDENCE PROBLEM Given a collection of tiles, is there a match? PCP = { P | P is a set of tiles with a match } PCP is undecidable!

18
THE FPCP GAME … is just like the PCP game except that a match has to start with the first tile

19
a aa aaa a a c a aa c a aaa a a aa FPCP

20
ba a a ab b bcb b a FPCP

21
Theorem: PCP is harder than FPCP. That is: FPCP m PCP Proof. We will show a reduction that converts a FPCP instance F into a PCP instance P, so that P has a PCP match iff F has a FPCP match.

22
To convert an FPCP isntance into a PCP instance: If u = u 1 u 2 …u n, we define: u = u 1 u 2 u 3 … u n t1t1 b1b1 … t2t2 b2b2 tktk bkbk t 1 b 1 t 1 b 1 t 2 b 2 t k b k … FPCP: PCP:

23
Theorem: FPCP is undecidable Proof:We will show that A TM m FPCP. Given a pair M,w we will construct a set of tiles that has a match iff M accepts w. The match will correspond to an accepting computation history of M on w.

24
COMPUTATION HISTORIES An accepting computation history is a sequence of configurations C 1,C 2,…,C k, where An rejecting computation history is a sequence of configurations C 1,C 2,…,C k, where 1. C 1 is the start configuration, 2. C k is a rejecting configuration, 3. Each C i follows from C i-1 2. C k is an accepting configuration, 1. C 1 is the start configuration,

25
M accepts w if and only if there exists an accepting computation history that starts with C 1 =q 0 w

26
0, R, R q accept q reject 0 x, R x x, R, R x x, R 0 0, L x x, L x x, R, L, R 0 x, R 0 0, R, R x x, R { 0 | n 0 } 2n2n q0q0 q1q1 q2q2 q3q3 q4q4

27
0, R, R q accept q reject 0 x, R x x, R, R x x, R 0 0, L x x, L x x, R, L, R 0 x, R 0 0, R, R x x, R { 0 | n 0 } 2n2n q0q0 q1q1 q2q2 q3q3 q4q4 q 0 0000 q 1 000 xq 3 00 x0q 4 0 x0xq 3 x0q 2 x xq 2 0x q 2 x0x : #q 0 0000# q 1 000# xq 3 00# x0q 4 0# x0xq 3 #... #

28
Given M,w, we will construct an instance P of FPCP in 7 steps

29
STEP 1 Put # #q 0 w 1 w 2 …w n # into P

30
# #q 0 w 1 w 2 …w n # matching C 1 on top adds C 2 on the bottom. IDEA FOR STEP 2-5: Add tiles so that: # #C 1 # C1#C1# C2#C2# C2#C2# C3#C3# Ci#Ci# C i+1 # matching C 2 on top adds C 3 on the bottom. matching C i on top adds C i+1 on the bottom. …

31
STEP 2 If (q,a) = (p,b,R) then add qa bp STEP 3 If (q,a) = (p,b,L) then add cqa pcbpcb for all c Γ

32
0, R, R q accept q reject 0 x, R x x, R, R x x, R 0 0, L x x, L x x, R, L, R 0 x, R 0 0, R, R x x, R { 0 | n 0 } 2n2n q0q0 q1q1 q2q2 q3q3 q4q4

33
0, R, R q accept q reject 0 x, R x x, R, R x x, R 0 0, L x x, L x x, R, L, R 0 x, R 0 0, R, R x x, R { 0 | n 0 } 2n2n q0q0 q1q1 q2q2 q3q3 q4q4 # #q 0 0000# q00q00 q 1 q10q10 xq3xq3 … 0q 3 q 2 0 xq 3 q 2 x q 3 q 2 0q200q20 q200q200 xq20xq20 q2x0q2x0 q 2 0

34
STEP 4 add a a STEP 5 add # # for all a Γ # #

35
# #q 0 0000# q 1 q00q00 xq3xq3 q10q10 q 2 0 0q 3 xq 3 q 2 x q 2 q 3 0q 2 0 q200q200 xq 2 0 q2x0q2x0 q 2 0 xq1xq1 q1xq1xq0xq0x xqrxqr q 0 q r q a q 1 q 2 q 1 q3xq3x xq3xq3 q30q30 0q40q4 q40q40 xq3xq3 q4xq4x xq4xq4 q 4 q r 0q 3 x q20xq20x q2xxq2xx xq 3 x q 3 x q 2 x x x # # 0 0 # # # #q 0 0000# xq3xq3 q10q10 0 0 0 0 # #q 0 0000# q 1 q00q00 0 0 0 0 0 0 # #

36
How do we get the match to stop? # #C 1 # C1#C2#C1#C2# C2#C3#C2#C3# C i # C i+1 # xq i ay# xbq acc y# … … ? Let q acc eat up one tape cell per step xbq acc y# xq acc y# xq acc # q acc # q acc ## #

37
STEP 7 add q acc ## # STEP 6 add aq acc q acc q acc a q acc for all a Γ

38
# #q 0 0000# q 1 q00q00 xq3xq3 q10q10 q 2 0 0q 3 xq 3 q 2 x q 2 q 3 0q 2 0 q200q200 xq 2 0 q2x0q2x0 q 2 0 xq1xq1 q1xq1xq0xq0x xqrxqr q 0 q r q a q 1 q 2 q 1 q3xq3x xq3xq3 q30q30 0q40q4 q40q40 xq3xq3 q4xq4x xq4xq4 q 4 q r 0q 3 x q20xq20x q2xxq2xx xq 3 x q 3 x q 2 x x x # # 0 0 # # 0 0q acc 0 q acc 0 x q acc x x xq acc x q acc x # #q 0 0000#

39
0 0, R, R q accept q reject 0 0, R, R q0q0 q1q1 0q10q1 q00q00 0q rej q10q10 q rej q 0 q 1 q acc 0 0 # # # #q 0 0# # # q acc 0q acc q acc q acc 0 # #q 0 0#0q10q1 q00q00# # 0 0 q 1 q acc # # 0 0 # q acc ## # #q acc 0q acc # #

40
Given M,w, we can construct an instance of FPCP that has a match if and only if M accepts w Since A TM is undecidable, so is PCP That is, A TM m FPCP. Since FPCP m PCP, we get: A TM m PCP

Similar presentations

Presentation is loading. Please wait....

OK

INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011.

INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt online shopping in india Ppt on abo blood grouping antigens Ppt on brushless dc motor Ppt on frame relay and atm Ppt on reuse of waste materials Ppt on job evaluation sample Ppt on cartesian product Ppt on thought leadership Ppt on word association test interpretation Ppt on merger acquisition and takeover