Download presentation

Presentation is loading. Please wait.

Published byKaty Langmaid Modified over 3 years ago

1
Spatial Domain Image Watermarking Robust against Compression, Filtering, Cropping and Scaling By Sebé, Domingo-Ferrer, Herrera Information Security Dec 2000 Wollongong Austr. Presented by Gene Rugg Electronic copyright protection schemes… have proven ineffective or insufficient in the last years. The recent failure of the DVD copy prevention is just another argument supporting the idea that electronic copyright protection should rather rely on copy detection techniques.

2
Measure of a Watermark Robustness * –Ability to resist image modification from typical image processing applications, difficult or impossible to remove without visiably degrading the original image Capacity * –The amount of information embedded and later detectible by the proper authorities Imperceptibility –The degree with which the original image is left unchanged.

3
Achievements of Watermarking Difficult to remove –Fairly easy to do Robust –Not easily done with current watermarks. Very fragile to many graphic attacks Imperceptible Readily detectible –Fairly easy to do

4
Robustness Sebe, Domingo and Herrera developed two algorithms that was more robust than most other watermarking techniques, based off ideas from Didital watermarking robust against JPEG compression, Lee Park and Zheng, 1999.

5
1: Crop-Proof Watermarking From the original take a JPEG copy, compressed to greater than the required resistance level eg 10%

6
1: Crop-Proof Watermarking Subtract the two pictures to from image. This is 0 where the colors match, or postive and negitive chages to the image. These non zero pixels are where the information is to be hidden

7
1: Crop-Proof Watermarking Take the binary watermark you wish to embed 10010110

8
1: Crop-Proof Watermarking Encode with an Error Correcting Code (ECC) 100100111010

9
1: Crop-Proof Watermarking Take a pseudo-random number, generated by a key only we know; k 100100111010 100101101011111010100100010001010…

10
1: Crop-Proof Watermarking Repeat watermark up to the number of bits in the image, ie w h pixels (3 w h colour) 100100111010100100111010100100111… 100101101011111010100100010001010…

11
1: Crop-Proof Watermarking XOR the bit strings. These represent when add or subtract the difference, the embedded string 100100111010100100111010100100111… 100101101011111010100100010001010… S= 000001010001011110011110110101101…

12
1: Crop-Proof Watermarking Use the string s to encode into the image Original Image

13
1: Crop-Proof Watermarking Use the string s to encode into the image JPEG Approximation

14
1: Crop-Proof Watermarking Use the string s to encode into the image 0 subtract, 1 adds 0 1 0 0 0 1 0 1 Encoded Image

15
1: Crop-Proof Watermarking If there is too much noise in the image, randomly choose pixels and shift the values towards the original image until the noise level is reduced.

16
Restore test image to BMP form, and compress to original JPEG level, and recalculate the non zero pixel locations Cycling the length of the watermark, compare the levels, and return 1: higher or 0: lower or #: undefined XOR this result with the pseudorandom string. Recall the result at the position in the watermark, then ECC retrieve the message 1: Crop-Proof Retrieval

17
1: Robustness Assessment Natively Robust Against: Color quantization All Low pass filtering –Gaussian blur –Median filter (2x2 3x3 4x4) –Simple sharpening –Laplacian removal, frequency mode JPEG compression higher than q Rotations of ±.25 degrees Shearing of 1% Cropping attacks/removal of rows or columns, by shifting the image until relative position is correct

18
1: Robustness ReAssessment Crop-Proof is better, as multiple watermarks can be applied, and still all can be detected, and recovered. Crop-Proof is worse against: Scale attacks of a small degree or more Minor rotations Random transformations and filters

19
2: Scale-Proof Watermarking From the original, calculate its darkness if its color is <70, and also by averaging the pixels around it, giving a maximised normalized number in a range of 1 to 4. This is V j d

20
2: Scale-Proof Watermarking Divide the image into the maximum number of squares so there are bands of pixels r wide, forming q tiles. Each tile will encode one bit so q is the capacity of the image

21
2: Scale-Proof Watermarking Encode and elongate that source watermark, XOR with the pseudorandom number up to q number of bits 100100111010100100111010100 100101101011111010100100010 S= 000001010001011110011110110

22
2: Scale-Proof Watermarking For all embeddable pixels in each tile, apply V j to each difference as before 0; new pixel is old color minus V j 1; new pixel is old color plus V j

23
2: Scale-Proof Retrieval From the given image, estimate the tile spacing, and number of tiles Within each tile, locate and compare each pixel relative with the original. If the difference is greater, record a 1 for that tile, or if less, a 0. XOR with the pseudorandom number Tally on each tile to see if there are more 1s or 0s Decode via ECC

24
2: Robustness Assessment Natively Robust Against: Color quantization Most Low pass filtering –Gaussian blur –Median filter (2x2 3x3) –Simple sharpening –Laplacian removal, frequency mode JPEG compression Rotations (with/without scaling) of ±.25 degrees Shearing of 1% Removal of rows or columns Scaling Attacks

25
2: Robustness ReAssessment Scale-Proof is better handling large compression and scaling attacks Scale-Proof is worse against: Crop attacks of a small degree or more Minor rotations

26
Conclusions More work is needed in the field of spatial- domain image watermarking Suggested a combination of the two techniques Obvious that image manipulation to scale and rotate back to normal possible and helps algorithms.

27
Thoughts Is 0.25° enough for most image manipulators? Is computation time as important as a concise algorithm? Did you understand, and is it useful? Acknowledgments: Sebé, Domingo-Ferrer, Herrera * Alecander Huber, informatik.tu-meunchen.de/~hubera/watermarking

Similar presentations

OK

MMC LAB Secure Spread Spectrum Watermarking for Multimedia KAIST MMC LAB Seung jin Ryu 1MMC LAB.

MMC LAB Secure Spread Spectrum Watermarking for Multimedia KAIST MMC LAB Seung jin Ryu 1MMC LAB.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google