Download presentation

Presentation is loading. Please wait.

Published byMackenzie Devin Modified over 3 years ago

1
Happy Birthday Michael !!

2
Probabilistic & Nondeterministic Finite Automata Avi Wigderson Institute for Advanced Study Very old (1996) joint work with Anne Condon Lisa Helerstein Sam Pottle

3
Pick a computational model. Study the relative power of its variants: Deterministic,Non-deterministic,Probabilistic Polynomial Time: NP=P? BPP=P? [BM,Y,NW,IW] BPP=P unless NP is easy Log Space: NL=L? BPL=L? [S] NL L 2 [IS] NL=coNL [N] BPL SC [SZ] BPL=L 3/2 [R] SL=L Finite automata! (= constant memory) [GMR,B] Arthur-Merlin, [F,D,BV] Quantum (part of) Rabins legacy

4
Deterministic,Non-deterministic,Probabilistic Arthur-Merlin, Quantum &1-way vs. 2-way read. 10 language classes… Regular = 1DFA, 1NFA, 1PFA, 1AMFA, 1QFA 2DFA, 2NFA, 2PFA, 2AMFA, 2QFA [Rabin-Scott 59] 1NFA = 2DFA = 1DFA [Rabin 63] 1PFA = 1DFA Comment : we shall not discuss relative succinctness Finite Automata (FA)

5
Deterministic,Non-deterministic,Probabilistic Arthur-Merlin, Quantum & 1-way vs. 2-way read [Rabin-Scott 59] 1NFA = 2DFA = Regular [Rabin 63] 1PFA = Regular [Shepherdson59] 2NFA = Regular [Freivalds 81] 2PFA can compute {a n b n } !! (But in exp time) FA* : automaton runs in expected poly-time [Dwork-Stockmeyer,Keneps-Frievalds 90] 2PFA*= Regular [Condon-Hellerstein-Pottle-W 96] 1AMFA = Regular [CHPW 96] 2AMFA* co2AMFA* = Regular [Watrous 97] 2QFA* compute {a n b n }, {a n b n c n }!! (linear time) OPEN: 2AMFA* = Regular ?? Results

6
L language M L infinite binary matrix x,y lexical order y 1101… [Myhill-Nerode] L regular 0110… iff M L has x … L(xy) finite number of rows iff 1s of M L have finite partition/cover by 1-tiles Communication Complexity [Yao] 111…1… … … … 111…1… … … … 1-tile x y Q: states |Q|=s

7
L accepted by 1DFA [Fact] 1DFA = Regular y Tile per state q Q x {x : Start q } X {y : q Accept } s tiles (partition) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 111…1…

8
L accepted by 1NFA y [RS] 1NFA = Regular x Tile per state q Q {x can Start q } X {y can q Accept } s tiles (cover) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 1…1…111 … 111…1…

9
L accepted by 1PFA [R] 1PFA = Regular Tile per probability distribution p [10s] s {x : Start ~ p} X {y : p Accept w.p.> 2/3} (10s) s tiles (partition) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 111…1…

10
L accepted by 2DFA [RS] 2DFA = Regular Tile per crossing Sequence c Q 2s {x: c consistent with x} X {y: c cons with y & c Acc} s 2s tiles (partition) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 111…1…

11
L accepted by 2NFA [S] 2NFA = Regular Tile per crossing Sequence c Q 2s {x can Start c } X {y can c Accept } s tiles (cover) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 1…1…111 … 111…1…

12
L accepted by 2PFA* y [DS,KF] 2PFA* = Regular Tile per O(s)-state Markov chain m [log n] O(s) {x: m x-consistent} X {y: m y-cons & Pr[m Acc]> 2/3 } (log n) O(s) tiles (partition) of M L (n) [Karp,DS,KF] M L (n) has large nonregularity Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 111…1…

13
L, L c accepted by 2AMFA* [CHPW] L is Regular Tile per O(s)-state Markov chain m [log n] O(s) {x can be m-consistent} X {y can be m-cons& Pr[m Acc]> 2/3 } (log n) O(s) 1-tiles (cover) of M L (n) (log n) O(s) 0-tiles (cover) of M L (n) [AUY,MS] Rank(M L (n)) = n o(1) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 1…1…111 … 111…1… 111…0… 00...0… … … … 00…0… … … … 0…0…00

14
[CHPW] L not Regular Rank(M L (n)) = n infinitely often [Frobenius 1894] [Iohvidov 1969] Special case when L is unary M L Hankel matrix Main Thm 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0

15
What is the power of interactive proofs when the verifier has constant memory ? 2AMFA* = Regular ?? Open question

16
Happy Birthday Michael !!

Similar presentations

OK

8/27/2009 Sofya Raskhodnikova Intro to Theory of Computation L ECTURE 2 Theory of Computation Finite Automata Operations on languages Nondeterminism L2.1.

8/27/2009 Sofya Raskhodnikova Intro to Theory of Computation L ECTURE 2 Theory of Computation Finite Automata Operations on languages Nondeterminism L2.1.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Water level indicator using seven segment display ppt online Ppt on water conservation and management Ppt on production process of asian paints Maths ppt on surface area and volume class 9 Ppt on 3g and 4g Ppt on telephone etiquettes and manners Ppt on book review of fish tales Ppt on fashion industry in india Ppt on 9 11 attack on world trade center and effects Ppt on triangles for class 9th