Download presentation

1
**Distributive Property**

Use the same concept that was applied with multiplication of integers, think of the first factor as the counter. The same rules apply. 3(12) You can split this up into manageable parts: 3(10 + 2) Three is the counter, so we need three rows of (10 + 2)

2
**Distributive Property**

3(10 + 2) 36 Now try these 2(16) 4(14) 2(19)

3
2(16) = 2(10 + 6) 32 4(14) = 4(10 + 4) = = 56

4
2(19) = 2(20 – 1) = 40 – 2 = 38

5
**Distributive Property This also works with a variable in the parentheses.**

3(X + 2) 3x + 6 Now try these: 3(x + 4) 2(x – 2) 4(x – 3)

6
**Distributive Property**

3(x + 4) (x – 2) 2x – 4 3x 4(x – 3) 4x – 12

7
Solving Equations Algebra tiles can be used to explain and justify the equation solving process. The development of the equation solving model is based on two ideas. Variables can be isolated by using zero pairs. Equations are unchanged if equivalent amounts are added to each side of the equation.

8
Solving Equations Use the green rectangle as X and the red rectangle (flip-side) as –X (the opposite of X). X + 2 = 3

9
**Solving Addition Equations**

X + 2 = 3 Therefore: X = 1 Now try these: x + 3 = x = 12

10
**Solving Addition Equations**

X + 3 = 8 Therefore: X = 5

11
**Solving Addition Equations**

5 + x = 12 Therefore: X = 7

12
**Solving Addition Equations**

9 = x + 4 Therefore: = x Now try these: 8 = x = 10 + x

13
**Solving Addition Equations**

8 = x + 6 Therefore: = x

14
**Solving Addition Equations**

14 = 10 + x Therefore: = x

15
**Solving Subtraction Equations**

X – 2 = 3 Therefore: X = 5 Now try these: x – 3 = – x = 12

16
**Solving Subtraction Equations**

X – 3 = 8 Therefore: X = 11

17
**Solving Subtraction Equations**

5 – x = 12 Then flip all to make the x positive Therefore: X = -7

18
**Solving Subtraction Equations**

9 = x – 4 Therefore: = x Now try these: 8 = x – = 10 – x

19
**Solving Subtraction Equations**

8 = x – 6 Therefore: = x

20
**Solving Subtraction Equations**

14 = 10 – x Then flip the sides to make the x positive Therefore: = x

21
**Multiplication Equations**

2X = 6 Then split the two sides into 2 even groups. Therefore: x = 3 Now, try these: 4x = 8 3x = 15

22
**Multiplication Equations**

4X = 8 Then split the two sides into 4 even groups. Therefore: x = 2

23
**Multiplication Equations**

3x = 15 Then split the two sides into 3 even groups. Therefore: x = 5

24
**Multiplication Equations**

4x = -16 Then split the two sides into 4 even groups. Therefore: x = -4 Now, try these: -10 = 2x -2x = -10

25
**Multiplication Equations**

-10 = 2x Then split the two sides into 2 even groups. Therefore: x = -5

26
**Multiplication Equations**

-10 = -2x Then split the two sides into 2 even groups. But to make the x’s positive, you have to flip both sides. Therefore: x = 5

27
Division Equations = 6 We can’t split or cut the x into 2 parts here. So let’s manipulate the two sides to fit the whole x. It takes 2 groups of the 6 to make the whole x. So make enough of the number side to make the whole x—make another group of 6. Therefore: x = 12

28
**Division Equations = 9 We can’t split or cut the x into 3 parts here.**

So let’s manipulate the two sides to fit the whole x. It takes 3 groups of the 9 to make the whole x. So make enough of the number side to make the whole x—make two other groups of 9. Therefore: x = 27

29
**Division Equations = 3 We can’t split or cut the x into 5 parts here.**

So let’s manipulate the two sides to fit the whole x. It takes 5 groups of the 3 to make the whole x. So make enough of the number side to make the whole x—make 4 other groups of 3. Therefore: x = 15

30
**Division Equations 2 = We can’t split or cut the x into 6 parts here.**

So let’s manipulate the two sides to fit the whole x. It takes 6 groups of the 2 to make the whole x. So make enough of the number side to make the whole x—make 5 other groups of 2. Therefore: x = 12

31
**Division Equations -2 = We can’t split or cut the x into 6 parts here.**

So let’s manipulate the two sides to fit the whole x. It takes 6 groups of the -2 to make the whole x. So make enough of the number side to make the whole x—make 5 other groups of -2. Therefore: x = -12

32
**Division Equations = -3 We can’t split or cut the x into 5 parts here.**

So let’s manipulate the two sides to fit the whole x. It takes 5 groups of the -3 to make the whole x. So make enough of the number side to make the whole x—make 4 other groups of -3. Therefore: x = -15

33
Division Equations = -9 We can’t split or cut the x into -3 parts here. So let’s manipulate the two sides to fit the whole x. It takes -3 groups of the -9 to make the whole x. So make enough of the number side to make the whole x—make two other groups of -9. Only this time, the x is negative, so we have to flip everything in order to make it positive.

34
**Two Step Equations 2X + 4 = 6 Therefore: x = 1**

The first thing is to get the x’s by themselves. Do this by subtracting 4 from both sides of the equation. Then, get rid of zero pairs. Now, split the two sides into equal parts. Therefore: x = 1

35
**Two Step Equations Now, try this:**

4x + 2 = 10 First, make your equation with algebra tiles Next, add/subtract #’s to get the x’s by themselves. And get rid of the zero pairs. After that, divide the sides into even groups of x’s & #’s Therefore: x = 2

36
**Two Step Equations How about this one:**

3x – 2 = 13 First, make your equation with algebra tiles Next, add/subtract #’s to get the x’s by themselves. And get rid of the zero pairs. After that, divide the sides into even groups of x’s & #’s Therefore: x = 5

Similar presentations

OK

Let’s Do Algebra Tiles Roland O’Daniel, The Collaborative for Teaching and Learning October, 2009 Adapted from David McReynolds, AIMS PreK-16 Project.

Let’s Do Algebra Tiles Roland O’Daniel, The Collaborative for Teaching and Learning October, 2009 Adapted from David McReynolds, AIMS PreK-16 Project.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on hunter commission 1882 Ppt on deforestation in india-2010 Well made play ppt on ipad Operating system notes free download ppt on pollution Ppt on polynomials of 900 Ppt on world sports day Ppt on global warming for school students Ppt on smart card based electronic passport system Free ppt on brain machine interface Ppt online reader