Download presentation

Presentation is loading. Please wait.

1
Review 5.1 to 5.3 Practice for Quiz

2
**Lesson Quiz: Part I Variation**

1. The volume V of a pyramid varies jointly as the area of the base B and the height h, and V = 24 ft3 when B = 12 ft2 and h = 6 ft. Find B when V = 54 ft3 and h = 9 ft. 18 ft2 2. The cost per person c of chartering a tour bus varies inversely as the number of passengers n. If it costs $22.50 per person to charter a bus for 20 passengers, how much will it cost per person to charter a bus for 36 passengers? $12.50

3
Example 3 Given: y varies inversely as x, and y = 4 when x = 10. Write and graph the inverse variation function. k x y = y varies inversely as x. k 10 Substitute 4 for y and 10 for x. 4 = k = 40 Solve for k. 40 x Write the variation formula. y =

4
Example 3 Continued To graph, make a table of values for both positive and negative values of x. Plot the points, and connect them with two smooth curves. Because division by 0 is undefined, the function is undefined when x = 0. x y –2 –20 –4 –10 –6 –20/3 –8 –5 x y 2 20 4 10 6 20/3 8 5

5
**5.2 Simplifying Rational Expressions Example 1**

Simplify. Identify any x-values for which the expression is undefined. 6x2 + 7x + 2 6x2 – 5x – 5 (2x + 1)(3x + 2) (3x + 2)(2x – 3) (2x + 1) (2x – 3) Factor; then divide out common factors. = The expression is undefined at ????

6
**Example 2: Multiplying Rational Expressions**

Multiply. Assume that all expressions are defined. 3x5y3 2x3y7 10x3y4 9x2y5 x – 3 4x + 20 x + 5 x2 – 9 A. B. 3x5y3 2x3y7 10x3y4 9x2y5 3 5 x – 3 4(x + 5) x + 5 (x – 3)(x + 3) 3 5x3 3y5 1 4(x + 3)

7
Dividing: Example Divide. Assume that all expressions are defined. 2x2 – 7x – 4 x2 – 9 ÷ 4x2– 1 8x2 – 28x +12 2x2 – 7x – 4 x2 – 9 8x2 – 28x +12 4x2– 1 (2x + 1)(x – 4) (x + 3)(x – 3) 4(2x2 – 7x + 3) (2x + 1)(2x – 1) (2x + 1)(x – 4) (x + 3)(x – 3) 4(2x – 1)(x – 3) (2x + 1)(2x – 1) 4(x – 4) (x +3)

8
**Example 5: Solving Simple Rational Equations**

Solve. Check your solution. x2 – 3x – 10 x – 2 = 7 (x + 5)(x – 2) (x – 2) = 7 Note that x ≠ 2. x + 5 = 7 x = 2 Because the left side of the original equation is undefined when x = 2, there is no solution.

Similar presentations

Presentation is loading. Please wait....

OK

Solving Inequalities by Multiplying or Dividing

Solving Inequalities by Multiplying or Dividing

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on motion force and pressure Ppt on air conditioning auditorium Ppt on phonetic transcription generator Ppt on fire extinguisher types electrical Ppt on international business law Download ppt on three states of matter Ppt on post abortion care Ppt on geometry of the universe Ppt on vitamin deficiency diseases Ppt on service oriented architecture soa