Download presentation

Presentation is loading. Please wait.

Published byAubree Thornton Modified over 4 years ago

1
The Poisson distribution for x = 0, 1, 2, 3,....., Example The number of particles emitted per second by a random radioactive source has a Poisson distribution with = 4. Calculate probability of : P(X = 0), P(X = 1) and P(X = 3) = 0.0183 = 0.195 = 0.0733

2
The number telephone calls received at an exchange during a weekday morning follows a Poisson distribution with a mean of 4 calls per five minute period. Find the probability that: (a) there are no calls in the next five minutes (b) 3 calls are received in the next five minutes (c) fewer than 2 calls are received between 12:00 and 12:05 (d) more than 2 calls are received between 16:30 and 16:35 (a) = 0.00674 (b) = 0.0719 (c)= 0.0337 (d) = 0.912

3
The number of accidents per week at a certain road intersection has a Poisson distribution with parameter 2.5. Find the probability that: (a) exactly 5 accidents will occur in a week (b) less than 4 accidents will occur in 2 weeks. (a) = 0.0668 (b) 0.2650 X Po(2.5) X Po(5) From tables

4
The number of letters a man receives each day has a Poisson distribution with mean 3. Find the probabilities that: (a) In one day he receives 4 letters. (b) In two days he receives less than 5 letters. (a) = 0.1680 (b) 0.2851 X Po(3) X Po(6) From tables

5
The number of meteorites which fall on a field in a year has a Poisson distribution with mean 3. Find the probabilities that: (a) 2 meteorites fall in a year (b) No meteorites fall in 6 months (c) More than 10 meteorites fall in three years. (a) = 0.2240 (b) e - 1.5 = 0.2231 X Po(3) X Po(1.5) (c) 1 – P(X 10) = X Po(9) 0.2940

6
A car hire company has three limousines available each day for hire. The demand for these cars follows a Poisson distribution with mean 1. Find the probabilities that: (a) The company cannot meet the demand for limousines on any one day. (b) The company cannot meet the demand for limousines on exactly one day in a five-day working week. (a) = 1 – P(X 3) (b) 0.0880 X Po(1) Binomial: p = 0.019, q = 0.981, n = 5, x = 1 P(X > 3) = 0.0190

Similar presentations

OK

A probability function is a function which assigns probabilities to the values of a random variable. Individual probability values may be denoted.

A probability function is a function which assigns probabilities to the values of a random variable. Individual probability values may be denoted.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on power system stability using facts devices Ppt on bank lending statistics Ppt on mauryan art Ppt on brand marketing books Difference between lcd and led display ppt on tv Ppt on mind reading technology Lockout tagout ppt online Ppt on writing a newspaper article Ppt on p&g products brands tide Ppt on instrument landing system outer