Presentation is loading. Please wait.

Presentation is loading. Please wait.

FIU and the HBCU/MI ETC A Successful Partnership

Similar presentations

Presentation on theme: "FIU and the HBCU/MI ETC A Successful Partnership"— Presentation transcript:

1 FIU and the HBCU/MI ETC A Successful Partnership
Presented by: Ali Ebadian, Ph.D. Director Hemispheric Center for Environmental Technology

2 Campus Construction in Progress: $230 M
Evolution of FIU 1972 6,000 students 2003 33,256 students 14th largest university in the nation Multi-campus university on 579 acres Over 95,000 alumni Campus Construction in Progress: $230 M

3 About FIU Carnegie Doctoral/Research University-Extensive Institution
Florida’s only public urban university with a chapter of Phi Beta Kappa Top producer of Hispanic graduates in the US; third largest producer of minority graduates 2003 Enrollment Breakdown

4 About FIU FIU has over 190 different degree programs in 19 colleges and schools FIU has a total of 4,500 employees, placing it among Miami-Dade County's 20 largest employers. The University has an economic impact of more than $1.6 billion on the South Florida economy. Sponsored research funding from outside sources grew to a record $64 million in The University's operating budget is $500 million

5 Experimental and Numerical Investigation of Flow Phenomena During the Solidification Process
HBCU/MI ETC Project 1

6 Background Solidification plays an important role in engineering, environment, and materials processing Examples: Solidification of castings and ingots, crystal growth, welding, polymer production, freezing in oceans, freezing of moist soils, and radioactive waste management This project supports DOE develop technologies that improve: Materials processing and manufacturing Energy efficiency Product quality Radioactive waste treatment

7 Objectives Understand physics of solid phase formation during the solidification of a binary mixture Focus on study of effects of convection pattern on the solidification process Current project involves: Experimental investigation of fluid and thermal aspects of the solidification process Numerical study of transient phenomena, heat and mass transfer processes, and phase transition phenomenon.

8 Technical Approach Binary solution: Ammonium chloride-water (NH4Cl-H20) Test chamber: Trapezoidal Experimental Study: Temperature measurements: 32 thermocouples (22 thermocouples for the solution and 10 thermocouples for the two cooling plates) Velocity Measurements: Particle Image Velocimetry Technique Thickness of frozen layer: Measured from the PIV images Numerical Study: Modeling of Solidification Process using Fluent 6.0.

9 Technical Approach Particle Image Velocimetry System Test Enclosure

10 Tasks Study the effect of cooling conditions on the solidification process Study the effect of initial concentrations on the solidification process Study the effect of ultrasonic vibrations on the solidification process Perform numerical modeling of the solidification process Compare data, and write and distribute final report

11 Deliverables Final report at the completion of the project
Published journals in technical journal and conferences The reports and technical presentations will contain all detailed information (data, analysis, results, conclusions, etc.) obtained in the course of this study.

12 Condensation and Evaporation Heat Transfer in Helical Pipes
HBCU/MI ETC Project 2

13 Background Helical pipe condensers/evaporators attain high heat transfer efficiency. R-134a is an environmentally friendly alternative refrigerant to replace ozone-depleting R-12 for automotive and HVAC industries. Limited literature on condensation and evaporation heat transfer using R-134a in helical pipes. This project is helping DOE develop technologies that: Improve energy efficiency (cooling, refrigeration) Safeguard the environment (no ozone-depleting refrigerants)

14 Objectives Understand hydraulic and thermal behavior of refrigerant’s two-phase flow in helical pipes under various conditions (orientation, flow flux, Reynolds number, saturation temperature etc.) Develop empirical correlations for effect of operating parameters on heat transfer rates Determine optimal design parameters

15 Tasks Investigate gravity influence on two-phase flow (refrigerant)
Investigate mass flux influence on heat transfer rate on refrigerant side Investigate Reynolds number influence on heat transfer rate on coolant side Investigate wall temperature influence on overall heat transfer rates. Investigate saturation temperature impact on heat transfer rate on refrigerant side

16 Experimental Setup

17 Research Approach Experimental Setup Data processing and reduction
Saturation temperature automatically controlled Temperature, pressure, flow rate recorded by data acquisition system Data processing and reduction Energy balance Newton’s cooling law Modified Wilson Plot Techniques

18 Deliverables Annual report Papers Final report of project findings
Experimental data, analysis and simulation results Plans for the next reporting period Papers Publish novel research findings

19 Contact Information Ali Ebadian, Ph.D. Director Hemispheric Center for Environmental Technology Florida International University 10555 West Flagler Street, CEAS 2100 Miami, Florida Phone: (305) Fax: (305) Visit HCET on the Internet:

Download ppt "FIU and the HBCU/MI ETC A Successful Partnership"

Similar presentations

Ads by Google