Download presentation

Presentation is loading. Please wait.

Published byHailie Gravette Modified over 2 years ago

1
Ionization Energies Revised 11/20/11 05/18/12 Mike Jones Pisgah High School Canton NC

2
Ionization energy The energy needed to remove an electron completely from at atom. Depends upon …. The attraction between the positively charged nucleus and the negatively charged electron. The repulsion between the negatively charged electrons.

3

4

5

6
+

7
+ 2

8
+ 2

9
+ 2

10
+ 2

11
+ 2

12
+ 2

13
+ 2

14
+ 2

15
+ 8 2

16
+ 8 2

17
+ 8 2

18
+ 8 2

19
+ 8 2

20
+ 8 2

21
+ 8 2

22
+ 8 2

23

24

25

26

27

28

29

30
Eight electrons are filling the second energy level. Why does the ionization energy increase along a period?

31
Why are there blips in the ionization energies?

32
The second energy level must be subdivided into two sublevels each with a different energy. The fifth electron for boron must be in a higher energy level because it takes less additional energy to remove it.

33
Electrons in the lower sublevel Electrons in the higher sublevel The second energy level must be subdivided into two sublevels each with a different energy. The fifth electron for boron must be in a higher energy level because it takes less additional energy to remove it.

34
The same is true for the third energy level. Electrons in the lower sublevel Electrons in the higher sublevel

35
There are many limitations of the Bohr model, including the fact that the calculations work only for hydrogen. But there is one overriding reason why the Bohr model is so important to our study of the atom and the arrangement of electrons. The Bohr model tells us that electrons are located only in certain, discrete energy levels and that they can only change from one energy level to another by gaining or losing energy.

36
The Bohr model has a few discrete energy levels. An excited electron is located in one of these energy levels A ground-state electron is located in the lowest energy level.

37
n2n The number of electrons in the n th energy level is given by 2n 2. The Bohr model showed only 8 electrons in the third energy level. Where are the other ten electrons?

38
The Quantum mechanical model has more energy levels available to electrons Except for the first energy level, each energy level in the Bohr model is subdivided into two or more sublevels. n2n n is the principle quantum number, one of 4 numbers that uniquiely describe each electron in an atom

39
n2n In multi-electron atoms the original Bohr energy levels are split into sublevels

40
n2n In multi-electron atoms the original Bohr energy levels are split into sublevels

41
n2n In multi-electron atoms the original Bohr energy levels are split into sublevels Overlap between energy sublevels.

42
n2n In multi-electron atoms the original Bohr energy levels are split into sublevels s 2s 2p 3s 4s 3p 4p 3d 4d 4f The letters s, p, d and f are used to label the sublevels. s = sharp p = principle d = diffused f = fundamental

43
n2n In multi-electron atoms the original Bohr energy levels are split into sublevels s 2s 2p 3s 4s 3p 4p 3d 4d 4f sublevelnumber of electrons s2 p6 d10 f The letters s, p, d and f are used to label the sublevels.

44
Periodic table - Sublevels s p d f How many electrons go in each region?

45
Since we cant see atoms or the electrons we have no idea what they actually look like. Yet we need a way to represent the organization of electrons in an atom. Much like technicians use a schematic diagram to represent the components in an electronic circuit, chemists use the electron energy diagram to represent electrons in an atom.

46

47
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 6s 4f 5d 6p 7s 5f 6d 7p E n e r g y Electron Energy Diagram n2n s2 p6 d10 f14 The electron energy diagram is a schematic diagram representing the arrangement of electrons in an atom. It consists of lines representing the orbitals in the various energy sublevels.

48
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 6s 4f 5d 6p 7s 5f 6d 7p E n e r g y Electron Energy Diagram n2n s2 p6 d10 f14 Each of the lines represents an orbital where up to two electrons can be located.

49
An orbital is a region in space within an atom where up to two electrons can be located. An s-orbital is spherical. Two electrons. The p-orbitals are dumbell shaped. Each orbital contains two electrons, for a total of six The Shrodinger wave equation predicts the shape of the orbitals.

50
The five d-orbitals are shaped like this. Each orbital can contain two electrons, for a total of 10 electrons. The transition metals are filling the d-orbitals.

51
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p E n e r g y Electron Energy Diagram for Arsenic Electrons with opposite spin are represented by up and down arrows. Each horizontal line represents an orbital, a region which can be occupied by up to two electrons. The electron energy diagram represents the arrangement of the electrons in their respective energy levels and sublevels.

52
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 6s 4f 5d 6p 7s 5f 6d 7p E n e r g y Electron Energy Diagram

53
1s E n e r g y Electron Energy Diagram

54
1s 2s 2p E n e r g y Electron Energy Diagram The second energy splits into two sublevels called s and p. An s-sublevel holds two electons. A p-sublevel holds up to six electrons in three orbitals.

55
1s 2s 2p 3s 3p 3d E n e r g y Electron Energy Diagram The third energy splits into three sublevels, the s, the p, and the d. The d-sublevel holds up to ten electrons in five orbitals.

56
1s 2s 2p 3s 4s 3p 4p 3d 4d 4f E n e r g y Electron Energy Diagram The fourth energy splits into four sublevels, the s, the p, the d, and the f. The f-sublevel holds up to 14 electrons in seven orbitals. Notice that the 4s sublevel is lower in energy than the 3d sublevel.

57
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 4f 5d 5f E n e r g y Electron Energy Diagram Notice the overlap again in the 5s and 4d, and the location of the 4f sublevel.

58
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 6s 4f 5d 6p 5f 6d E n e r g y Electron Energy Diagram The 6s-sublevel is lower in energy than the 4f sublevel.

59
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 6s 4f 5d 6p 7s 5f 6d 7p E n e r g y Electron Energy Diagram The 7s-sublevel is lower in energy than the 5f sublevel. The energy sublevels are filled in order from lowest energy to highest energy.

60
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 6s 4f 5d 6p 7s 5f 6d 7p E n e r g y Electron Energy Diagram Order in which the energy sublevels are filled.

61
Periodic table - Sublevels s p d f

62
Order in which the energy sublevels are filled.

63
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 6s 4f 5d 6p 7s 5f 6d 7p E n e r g y Electron Energy Diagram The order in which the orbitals are filled can also be predicted from the graph of ionization energy.

64
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s H

65
2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s He

66
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s Li

67
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s Be

68
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p B

69
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p C

70
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p N

71
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p O

72
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p F

73
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p Ne

74
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s Na

75
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s Mg

76
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p Al

77
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p Si

78
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p P

79
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p S

80
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p Cl

81
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p Ar

82
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s K

83
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s Ca

84
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d Sc

85
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d Ti

86
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d V

87
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d Cr

88
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d Mn

89
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d Fe

90
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d Co

91
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d Ni

92
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d Cu

93
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d Zn

94
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p Ga

95
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p Ge

96
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p As

97
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p Se

98
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p Br

99
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p Kr

100
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p 5s Rb

101
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p 5s Sr

102
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d Y

103
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d Tc

104
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d Cd

105
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p In

106
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p Sb

107
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p Xe

108
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p Cs

109
1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p E n e r g y Electron Energy Diagram for Arsenic We can represent the arrangement of electrons more simply by using the electron configuration. 1s 2, 2s 2 2p 6, 3s 2 3p 6, 4s 2 4p 3

110
1s 2, 2s 2 2p 6, 3s 2 3p 6, 4s 2 4p 3 1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p E n e r g y Electron Energy Diagram for Arsenic We can simplify the electron configuration even more by using the inert gas core to represent the electrons which do not take part in chemical reactions.

111
Ar 4s 2 4p 3 1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p E n e r g y Electron Energy Diagram for Arsenic We can simplify the electron configuration even more by using the inert gas core to represent the electrons which do not take part in chemical reactions.

112
Ar 4s 2 4p 3 1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p E n e r g y Electron Energy Diagram for Arsenic Write the electron configuration using the inert gas core for the following elements: 1. Al 4. P 2. V 5. Sn 3. Br 6. Bi

113
Write the electron configuration using the inert gas core for the following elements: 1. Al 4. P 2. V 5. Sn 3. Br 6. Bi 1.[Ne] 3s 2 3p 1 2.[Ar] 4s 2, 3d 3 3.[Ar] 4s 2, 3d 10, 4p 5 4.[Ne] 3s 2, 3p 3 5.[Kr] 5s 2, 4d 10, 5p 2 6.[Xe] 6s 2, 4f 14, 5d 10, 6p 3 How many valence electrons does each element have? Valence electrons are the outer-most electrons which are involved in bonding.

114
1.[Ne] 3s 2 3p 1 2.[Ar] 4s 2, 3d 3 3.[Ar] 4s 2, 3d 10, 4p 5 4.[Ne] 3s 2, 3p 3 5.[Kr] 5s 2, 4d 10, 5p 2 6.[Xe] 6s 2, 4f 14, 5d 10, 6p 3 1. Al 3 2. V5 3. Br 7 4. P 3 5. Sn4 6. Bi5 Look at the Roman numeral at the top of the column for each element. The valence electrons have the highest principal quantum number.

115
Mike Jones Pisgah High School Canton NC

116
+ 1s 2s 2p 3s 4s 3p 4p 3d 4d 5s 5p 6s 4f 5d 6p 7s 5f 6d 7p E n e r g y Spare parts

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google