Download presentation

Presentation is loading. Please wait.

Published byDanielle Cardon Modified over 3 years ago

1
Kinetics of Radioactive Decays Decay Expressions Half-Life Average Life First-Order Decays Multi- Component Decays Mixtures – Independent Decays Consecutive & Branching Decays Equilibrium Phenomena Non-Equilibrium Decay/Growth Complications

2
Kinetics of First Order Reactions

3
2.1 First-Order Decay Expressions 2.1 (a) Statistical Considerations (1905) Let: p = probability of a particular atom disintegrating in time interval t. Since this is a pure random event; that is, all decays are independent of past and present information; then each t gives the same probability again. Total time = t = n t

4
2.1 First-Order Decay Expressions 2.1 (a) Statistical Considerations (1905) Note: typo +

5
2.1 First-Order Decay Expressions 2.1 (b) Decay Expressions: (i) N-Expression

6
2.1 First-Order Decay Expressions Excel Example

7
2.1 First-Order Decay Expressions 2.1 (b) Decay Expressions: (ii) A-Expression Define: A = Activity (counts per second or disintegrations per second) For fixed geometry:

8
2.1 First-Order Decay Expressions 2.1 (b) Decay Expressions: (ii) A-Expression Define: A = Activity (counts per second or disintegrations per second) A = c N Where: c = detection coeff.

9
2.1 First-Order Decay Expressions 2.1 (c) Lives (i) Half-life: t 1/2 Defined as time taken for initial amount ( N or A ) to drop to half of original value.

10
2.1 First-Order Decay Expressions Note: What is N after x half lives?

11
2.1 First-Order Decay Expressions 2.1 (c) Lives (ii) Average/Mean Life: (common usage in spectroscopy) Can be found from sums of times of existence of all atoms divided by the total number.

12
2.1 First-Order Decay Expressions 2.1 (c) (ii) Average/Mean Life: (common usage in spectroscopy)

13
2.1 First-Order Decay Expressions 2.1 (c) Lives (iii) Comparing half and average/mean life Why is greater than t 1/2 by factor of 1.44? gives equal weighting to those atoms that survives a long time!

14
2.1 First-Order Decay Expressions 2.1 (c) Lives (iii) Comparing half and average/mean life What is the value of N at t = ? Excel Example

15
2.1 First-Order Decay Expressions 2.1 (d) Decay/Growth Complications Kinetics can get quite complicated mathematically if products are also radioactive (math/expressions next section) Examples:

16
2.1 First-Order Decay Expressions 2.1 (e) Units of Radioactivity Refers to Activity 1 Curie (Ci) = the amount of RA material which produces 3.700x10 10 disintegrations per second. SI unit => 1 Becquerel (Bq) = 1 disintegration per second Example (1): Compare 1 mCi of 15 O ( t 1/2 = 2 min ) with 1 mCi of 238 U ( t 1/2 = 4.5x10 9 y ) Use Specific Activity = Bq/g ( activity per g of RA material )

17
2.1 First-Order Decay Expressions 2.1 (e) Units of Radioactivity Rad = quantitative measure of radiation energy absorption (dose) 1 dose of 1 rad deposits 100 erg/g of material SI dose unit => gray (Gy) = 1 J/kg; 1 Gy = 100 rad Roentgen (R) = unit of radiation exposure; 1 R = 1.61x10 12 ion pairs per gram of air. More Later !

18
2.1 First-Order Decay Expressions 2.1 (e) Units of Radioactivity: Example (2): Calculate the weight (W) in g of 1.00 mCi of 3 H with t 1/2 = 12.26 y.

19
2.1 First-Order Decay Expressions 2.1 (e) Units of Radioactivity: Example (3): Calculate W of 1.00 mCi of 14 C with t 1/2 = 5730 y. Example (4): Calculate W of 1.00 mCi of 238 U with t 1/2 = 4.15x10 9 y.

20
2.1 First-Order Decay Expressions 2.1 (e) Units of Radioactivity: NucleiA (mCi)t 1/2 (y)W (g)Sp. Act. (Bq/q) 3H3H1.0012.261.03x10 -7 3.59x10 14 14 C1.0057302.24x10 -4 1.65x10 11 238 U1.004.51x10 9 3.00x10 3 1.23x10 4

21
2.2 Multi-Component Decays 2.2 (a) Mixtures of Independently Decay Activities

22
2.2 Multi-Component Decays 2.2 (a) Mixtures of Independently Decay Activities Resolution of Decay Curves (i) Binary Mixture ( unknowns 1, 2, initial A 1 & A 2 ) Excel plot

23
2.2 Multi-Component Decays 2.2 (a) Mixtures of Independently Decay Activities Resolution of Decay Curves (ii) If 1 & 2 are known but 1 2 (not very different) (iii) Least Square Analysis ( if only A t versus t ) [Multi-parameter fitting software]

24
2.2 Multi-Component Decays 2.2 (b) Relationships Among Parent and RA Products Consider general case of Parent(N 1 )/daughter(N 2 ) in which daughter is also RA. (i) If (2) is stable (ii) If (2) is RA and (3) is stable

25
2.2 Multi-Component Decays 2.2 (b) Relationships Among Parent and RA Products N 2 equation (2.8) and its variations.

26
2.2 Multi-Component Decays 2.2 (b) Relationships Among Parent and RA Products N 2 equation (2.8) and its variations … cont.

27
2.2 Multi-Component Decays 2.2 (c) Equilibrium Phenomena (Transient & Secular): Parent longer lived Consider equation (2.8) (1) Transient Equilibrium ( 1 < 2 ) (i) When t is large:

28
2.2 Multi-Component Decays 2.2 (c) Equilibrium Phenomena (Transient & Secular): Parent longer lived Consider equation (2.8) (1) Transient Equilibrium ( 1 < 2 ) (ii) for activities Note: Main point is that for transient equilibrium, after some time, both species will decay with 1.

29
2.2 Multi-Component Decays 2.2 (c) Equilibrium Phenomena (Transient & Secular): Parent longer lived Consider equation (2.8) (1) Transient Equilibrium ( 1 < 2 ) (iii) A 1 + A 2 (starting with pure 1) Will go through a maximum before transient equilibrium is achieved.

30
2.2 Multi-Component Decays 2.2 (c) Equilibrium Phenomena (Transient & Secular): Parent longer lived Consider equation (2.8) (1) Transient Equilibrium ( 1 < 2 ) (iii) A 1 + A 2 (starting with pure 1) Will go through a maximum before transient equilibrium is achieved.

31
2.2 Multi-Component Decays 2.2 (c) Relationships Among Parent and RA Products (2) Secular Equilibrium ( 1 << 2 )

32
2.2 Multi-Component Decays 2.2 (c) Relationships Among Parent and RA Products (2) Secular Equilibrium ( 1 << 2 ) … cont.

33
2.2 Multi-Component Decays 2.2 (d) Non-Equilibrium Cases (i) If parent is shorter-lived than daughter ( 1 > 2 )

34
2.2 Multi-Component Decays 2.2 (d) Non-Equilibrium Cases (i) If parent is shorter-lived than daughter ( 1 > 2 ) … cont. Note: If parent is made free of daughter at t=0, then daughter will rise, pass through a maximum ( dN 2 /dt=0 ), then decays at characteristic 2.

35
2.2 Multi-Component Decays 2.2 (d) Non-Equilibrium Cases (i) If parent is shorter-lived than daughter ( 1 > 2 ) … cont.

36
2.2 Multi-Component Decays 2.2 (d) Non-Equilibrium Cases (ii) If parent is shorter-lived than daughter ( 1 >> 2 )

37
2.2 Multi-Component Decays 2.2 (d) Non-Equilibrium Cases (ii) If parent is shorter-lived than daughter ( 1 >> 2 ) At large t, extrapolate back to t=0 to get c 2 2 N 1 o and slope=- 2

38
2.2 Multi-Component Decays 2.2 (d) Non-Equilibrium Cases (ii) If parent is shorter-lived than daughter ( 1 >> 2 ) … cont. Useful Ratio:

39
2.2 Multi-Component Decays 2.2 (d) Non-Equilibrium Cases (iii) Use of t m for both transit & non-equilibrium analysis Idea: Differentiate original N 2 equation to get maximum ( with N 2 o = 0 )

40
2.2 Multi-Component Decays 2.2 (d) Non-Equilibrium Cases (iii) Use of t m for both transit & non-equilibrium analysis Idea: Differentiate original N 2 equation to get maximum ( with N 2 o = 0 ) Note: t m = for secular equilibrium.

41
2.2 Multi-Component Decays 2.2 (e) Many Consecutive Decays: (note: previous N 1 & N 2 equations are still valid.) H. Bateman gives the solutions for n numbers for pure N 1 o at t=0. (i.e. N 2 o = N 3 o = N n o = 0) Can also be found for N 2 o, N 3 o, N 4 o … N n o 0. But even more tedious!

42
2.2 Multi-Component Decays 2.2 (f) Branching Decays Nuclide decaying via more that one mode.

43
2.2 Multi-Component Decays 2.2 (f) Branching Decays Example: 130 Cs has a t 1/2 = 30.0 min and decays by + and - emissions. It is found that for every 2 atoms of 130 Ba in the products there are 55 atoms of 130 Xe. Calculate (t 1/2 ) - and (t 1/2 ) +.

44
2.2 Multi-Component Decays 2.2 (f) Branching Decays Example: 130 Cs has a t 1/2 = 30.0 min and decays by + and - emissions. It is found that for every 2 atoms of 130 Ba in the products there are 55 atoms of 130 Xe. Calculate (t 1/2 ) - and (t 1/2 ) +. (t 1/2 ) - = 855 min (t 1/2 ) + = 31.1 min

45
Kinetics of Radioactive Decays Decay Expressions Half-Life Average Life First-Order Decays Multi- Component Decays Mixtures – Independent Decays Consecutive & Branching Decays Equilibrium Phenomena Non-Equilibrium Decay/Growth Complications

Similar presentations

Presentation is loading. Please wait....

OK

PHYSICS – Radioactive Decay

PHYSICS – Radioactive Decay

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Download ppt on diversity in living organisms for class 9 Ppt on benefits of drinking water Revising vs editing ppt on ipad Ppt on obesity management journal Ppt on world population day 2013 Download ppt on gender sensitivity Ppt on two point perspective buildings Profit maximization in short run ppt on tv Ppt on needle stick injury report Ppt on earth movements and major landforms in texas