Presentation is loading. Please wait.

Presentation is loading. Please wait.

NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic.

Similar presentations


Presentation on theme: "NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic."— Presentation transcript:

1 NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic Andreas Baur Dean Tantillo Barakat Alavi Charge order in quasi-1D organic conductors Bourbonnais and Jerome (1999)

2 Summary slide 1.CO ubiquitous to ¼-filled CTS. Pressure can be used to tune interactions, ground states. What does this say about sequence of phase transitions in (TM) 2 X? 2.AsF 6 salt: CO, SP order parameters repulsive 3.SbF 6 salt: CO, AF order parameters attractive 4.New AF phase in SbF 6 ; also CO (maybe different CO?) 5.Evidence that counterion potential softness plays a role in stabilizing intermediate CO phase? (Brazovskii, Poilblanc)

3 13 C spectrum in (TMTTF) 2 AsF 6, signature of CO is emergence of inequivalent sites… B at magic angle A B

4 1D (or Q1D) Extended Hubbard model @ 1/4 filling, T=0 consistent with CO seen by experiments Seo and Fukuyama, JPSJ (1997): (mean-field approximation in higher dimension) Clay, et al., PRB (2002) Ground state AF with charge disproportionation Clay, et al., PRB (2002) CO liquid

5 Order parameters for two compounds: (TMTTF) 2 PF 6, (TMTTF) 2 AsF 6 T co (PF 6 )~65K T co (AsF 6 )=103K CO transition is probably continuous… Breaks inversion symmetry of unit cell (Monceau, et al., divergent low freq. susceptibility) SCN, ReO 4, Br, PF 6, AsF 6, SbF 6 …: theyre insulating and theyre CO (Coulon, Monceau, Nad, Brown)

6 Splitting of the C=C stretching mode results from 2:1 charge disproportionation T>T CO T { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/4/1473591/slides/slide_6.jpg", "name": "Splitting of the C=C stretching mode results from 2:1 charge disproportionation T>T CO T

7 1D (or Q1D) Extended Hubbard model @ 1/4 filling, T=0 consistent with CO seen by experiments Seo and Fukuyama, JPSJ (1997): mean-field approximation in higher dimension Clay, et al., PRB (2002) Ground state AF with charge disproportionation 1.AsF 6 2.SbF 6 Clay, et al., PRB (2002) CO liquid pressure

8 Competition between CO/SP phases in (TMTTF) 2 AsF 6 : high-pressure experiments

9 The appearance of the phase diagram is constrained by the order of the transitions… CO D1D1 D2D2 CO+DD 2 nd order boundary for CO/SP implies there is a coexistence region D=spin-Peierls

10 c=0 c>0 b 1 b 2 >4c 2 c<0 c>0 b 1 b 2 <4c 2

11 CO D1D1 D2D2 D D CO+D Dumm, et al., J. Phys. IV (2004)

12 A puzzle: (TMTTF) 2 SbF 6 with AF ground state Salta (angstrom)*T CO (K) ( -cm) -1** Ground state (TMTTF) 2 PF 6 7.15465K40Spin-Peierls (TMTTF) 2 AsF 6 7.178103K25Spin-Peierls (TMTTF) 2 SbF 6 7.195156K10AF SbF 6 AsF 6,PF 6 T CO (SbF 6 ) structureless transition, as in ReO 4, SCN, SbF 6 RT T(K) *R. Laversanne, et al., J. Phys. Lett.45, L393 **C. Coulon, et al., PRB 33, 6235 C. Coulon, et al.

13 SbF 6 salt CO at higher T AF (comm.) at lower T

14 Applied pressure and the (TMTTF) 2 SbF 6 phase diagram: CO, comm. AF order parameters ATTRACTIVE (GPa/10)

15 P~0.6GPa ground state? decreasing with T + equivalent intramolecular 13 C, + broad spectrum singlet

16 Spectrum characteristics Peak separation ind. of B, as for AF, only weakly T-dependent Relative intensity of peaks grows smoothly on cooling, as for 1 st order transition P=1.1GPa same AF? or different?

17 Jump in OP + smooth increase in AF volume fraction Similar to observations in SDW/AF first order phase boundary (Vuletic, et al., Lee, et al.) Conclude: new commensurate AF phase in SbF 6 salt ??accompanied by charge disproportionation??

18 SbF 6 counterion broken symmetry (stops rotating) Possible reason for suppression of CO: impeded motion of counterion (Monceau, Nad, Brazovskii, PRL 2001) ambient pressure order parameter

19 Riera & Poilblanc, PRB (2002) Does +

20 Summary slide 1.CO ubiquitous to ¼-filled CTS 2.CO at high temperatures influences what further broken symm. observed at low T: AsF 6 salts (CO vs. SP), AF in SbF 6 3.Different AF phase in SbF 6, strongly first order character, different CO also? 4.Counterion potential softness plays a role in stabilizing intermediate CO phase (Brazovskii, Poilblanc): coincident crossovers in OP amplitude, motional narrowing associated with rotations + pressure effects

21 Is the suppression of CO in (TMTTF) 2 SbF 6 the result of a competition between these configurations? Pressure enhances interchain V View from crystallographic b-direction

22

23 P applied =0.5 GPa: No sign of splitting but lines are broad at higher temperatures T=10K At lower temperature, line broadens. 2D experiment demonstrates some molecules see no paramagnetism (somewhat like SP phase) T=4K

24

25 CO is ubiquitous to TMTTF materials… H. Javadi, et al. (1988) ? Origin of metal- insulator (structureless) transition in (TMTTF) 2 SbF 6

26 pressure CO SbF 6 AsF 6,PF 6

27 OP probably breaks inversion symmetry in MF 6 salts… Divergence of real part of electric susceptibility e (q=0, =0) observed; see Monceau, et al. (PRL, 2001) (Ising) symmetry-breaking OP that leads to divergent e (q=0)

28 F. Zamborszky, et al., PRB 2002 Charge disproportionation ratio approx. 3:1 ~.25 Fujiyama and Nakamura obtain smaller rate ratio, about 4:1 (cond-mat/0501063)

29 ¼-filled systems susceptible to charge-disproportionation Organic D 2 X 2:1 charge-transfer salts: ½- and ¼-filled (TM) 2 X here (BEDT-TTF) 2 X (TM) 2 X Hotta, JPSJ 72, 840

30 CO ubiquitous to TMTTF salts: SCN, ReO 4, Br, PF 6, AsF 6, SbF 6 … (Coulon, Monceau, Nad, ) What does phase diagram look like? What role does tendency for CO play in determining ground state? H. Javadi, et al. PRB (1988)


Download ppt "NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic."

Similar presentations


Ads by Google