Download presentation

Presentation is loading. Please wait.

Published byVictor Wilsey Modified over 3 years ago

1
Effects on the Vector Spectral Function from Vector-Axialvector mixing based on the Hidden Local Symmetry combined with AdS/QCD Masayasu Harada (Nagoya Univ.) @ × (Kobe, June 23, 2011) based on M.H. and C.Sasaki, Phys. Rev. C 80, 054912 (2009)] M.H., C.Sasaki and W.Weise, Phys. Rev. D 78, 114003 (2008) see also M.H. and C.Sasaki, PRD74, 114006 (2006) M.H., S.Matsuzaki and K.Yamawaki, PRD82, 076010 (2010) M.H. and M.Rho, arXiv:1102.5489 (to appear in PRD)

2
Origin of Mass ? of Hadrons of Us One of the Interesting problems of QCD =

3
Origin of Mass = quark condensate Spontaneous Chiral Symmetry Breaking

4
QCD under extreme conditions Hot and/or Dense QCD Chiral symmetry restoration T critical 170 – 200 MeV critical a few times of normal nuclear matter density Change of Hadron masses ?

5
Masses of mesons become light due to chiral restoration Dropping mass of hadrons Brown-Rho scaling G.E.Brown and M.Rho, PRL 66, 2720 (1991) for T T critical and/or ρ ρ critical NJL model T.Hatsuda and T.Kunihiro, PLB185, 304 (1987) QCD sum rule : T.Hatsuda and S.H.Lee, PRC46, R34 (1992) T.Hatsuda, Quark Matter 91 [NPA544, 27 (1992)] Vector Manifestation M.H. and K.Yamawaki, PRL86, 757 (2001) M.H. and C.Sasaki, PLB537, 280 (2002) M.H., Y.Kim and M.Rho, PRD66, 016003 (2002)

6
Di-lepton data consistent with dropping vector meson mass KEK-PS/E325 experiment m = m 0 (1 - / 0 ) for = 0.09 m = m 0 (1 - / 0 ) for = 0.03 K.Ozawa et al., PRL86, 5019 (2001) M.Naruki et al., PRL96, 092301 (2006) R.Muto et al., PRL98, 042501 (2007) F.Sakuma et al., PRL98, 152302 (2007) Di-lepton data consistent with NO dropping vector meson mass Analysis : H.v.Hees and R.Rapp, NPA806, 339 (2008) All P T Analysis : J.Ruppert, C.Gale, T.Renk, P.Lichard and J.I.Kapusta, PRL100, 162301 (2008) NA60 CLAS R. Nasseripour et al. PRL99, 262302 (2007). M.H.Wood et al. PRC78, 015201 (2008)

7
Signal of chiral symmetry restoration other than dropping ? axial-vector current (A 1 couples) vector current (ρ couples) These must agree with each other e-e- e+e+ vector mesons (ρ etc.) e ν axial-vector mesons Impossible experimentally But, in medium, this might be seen through the vector – axial-vector mixing ! How these mixing effects are seen in the vector spectral function ? ρ etc etc e+e+ e-e-,, …

8
Outline 1. Introduction 2. Effect of Vector-Axialvector mixing in hot matter 3. Effect of V-A mixing in dense baryonic matter 4. Summary

9
2. Effect of Vector-Axialvector mixing in hot matter MH, C.Sasaki and W.Weise, Phys. Rev. D 78, 114003 (2008)

10
Vector spectral function at T/Tc = 0.8 e-e- e+e+ A1 π + ρ e-e- e+e+ π ρ Effects of pion mass Enhancement around s 1/2 = m a – m π Cusp structure around s 1/2 = m a + m π V-A mixing originated from -A 1 - interaction

11
V-A mixing small near Tc T-dependence of the mixing effect

12
Vanishing V-A mixing (g a1 = 0) at Tc ? In quark level A1 Left chirality L L R We need to flip chirality once in a1- - coupling g a1 0 for T Tc Vector – axial-vector mixing vanishes at T = Tc !

13
3. Vector – Axial-vector mixing in dense baryonic matter based on M.H. and C.Sasaki, Phys. Rev. C 80, 054912 (2009) see also M.H., S.Matsuzaki and K.Yamawaki, PRD82, 076010 (2010) M.H. and M.Rho, arXiv:1102.5489 (to appear in PRD)

14
A possible V-A mixing term violates charge conjugation but conserves parity generates a mixing between transverse and A 1 ex : for p = (p 0, 0, 0, p) no mixing between V 0,3 and A 0,3 (longitudinal modes) mixing between V 1 and A 2, V 2 and A 1 (transverse modes) Dispersion relations for transverse and A 1 + sign transverse A 1 [p 0 = m a1 at rest (p = 0)] - sign transverse [p 0 = m at rest (p = 0)]

15
Determination of mixing strength C An estimation from dominance A 1 interaction term an empirical value : (cf: N.Kaiser,U.G.Meissner, NPA519,671(1990)) NN interaction provides the condensation in dense baryonic matter an empirical value : Mixing term from dominance

16
An estimation in a holographic QCD (AdS/QCD) model Infinite tower of vector mesons in AdS/QCD models,,, … These infinite mesons can generate V-A mixing This summation was done in an AdS/QCD model S.K.Domokos, J.A.Harvey, PRL99 (2007)

17
Can infinite tower of mesons contribute ? This is related to a long-standing problem of QCD not clearly understood: The / meson dominance seems to work well. Here I would like to show some examples of the violation of / dominance meson dominance ; Example 1: EM form factor In an effective field theory for and based on the Hidden Local Symmetry EM form factor is parameterized as In Sakai-Sugimoto model (AdS/QCD model), infinite tower of mesons do contribute k=1 : meson k=2 : meson k=3 : meson … T.Sakai, S.Sugimoto, PTP113, PTP114 = 1.31 + (-0.35) + (0.05) + (-0.01) + …

18
Example 1: EM form factor meson dominance 2 /dof = 226/53=4.3 ; SS model : 2 /dof = 147/53=2.8 best fit in the HLS : 2 /dof=81/51=1.6 Exp data : NA7], NPB277, 168 (1996) J-lab F(pi), PRL86, 1713(2001) J-lab F(pi), PRC75, 055205 (2007) J-lab F(pi)-2, PRL97, 192001 (2006) Infinite tower works well as the meson dominance ! MH, S.Matsuzaki, K.Yamawaki, PRD82, 076010 (2010) cf : MH, K.Yamawaki, Phys.Rept 381, 1 (2003)

19
Example 2: Proton EM form factor M.H. and M.Rho, arXiv:1102.5489 meson dominance : 2 /dof=187 best fit in the HLS : 2 /dof=1.5 a = 4.55 ; z = 0.55 Violation of / meson dominance may indicate existence of the contributions from the higher resonances. Contribution from heavier vector mesons actually exists in several physical processes even in the low-energy region Hong-Rho-Yi-Yee (Hashimoto-Sakai-Sugimoto) model: 2 /dof=20.2 a = 3.01 ; z = -0.042

20
An estimation in a holographic QCD (AdS/QCD) model Infinite tower of vector mesons in AdS/QCD models,,, … These infinite mesons can generate V-A mixing This summation was done in an AdS/QCD model In the following, I take C = 0.1 - 1 GeV. Note that e.g. C = 0.5 GeV corresponds to C = 0.1 × (n B /n 0 ) at n B = 5 n 0 C = 0.5 × (n B /n 0 ) at n B = n 0 This may be too big, but we can expect some contributions from heavier,, …

21
Dispersion relations meson A 1 meson C = 0.5 GeV : small changes for and A 1 mesons C = 1 GeV : small change for A 1 meson substantial change in meson

22
Vector spectral function for C = 1 GeV note : = 0 for s < 2 m low 3-momentum (p bar = 0.3 GeV) longitudinal mode : ordinary peak transverse mode : an enhancement for s < m and no clear peak a gentle peak corresponding to A 1 meson spin average (Im G L + 2 Im G T )/3 : 2 peaks corresponding to and A 1 high 3-momentum (p bar = 0.6 GeV) longitudinal mode : ordinary peak transverse mode : 2 small bumps and a gentle A 1 peak spin averaged : 2 peaks for and A 1 ; Broadening of peak

23
Effect of vector - axial-vector mixing (V-A mixing) in hot matter Effect of the dropping A 1 to the vector spectral function might be relevant through the V-A mixing. Note : The mixing becomes small associate with the chiral restoration. g a F 2 0 at T = Tc Observation of dropping A1 may be difficult 4. Summary

24
Effect of V-A mixing (violating charge conjugation) in dense baryonic matter for -A 1, -f 1 (1285) and -f 1 (1420) substantial modification of rho meson dispersion relation broadening of vector spectral function might be observed at J-PARC and GSI/FAIR Large C ? : If C = 0.1GeV, then this mixing will be irrelevant. If C > 0.3GeV, then this mixing will be important. We need more analysis for fixing C. Note : C = 0.3 GeV at n B = 3 n 0. This V-A mixing becomes relevant for n B > 3 n 0

25
Including dropping mass (especially dropping ) ? This mixing will not vanish at the restoration. (cf: V-A mixing in hot matter becomes small near Tc.) Future work Dropping may cause a vector meson condensation at high density. ex: m */m = ( 1 – 0.1 n B /n 0 ) suggested by KEK-E325 exp. C = 0.3 (n B /n 0 ) [GeV] just as an example Vector meson condensation ! vacuum longitudinal transverse p0p0 p n B /n 0 = 2 n B /n 0 = 3 n B /n 0 = 3.1

Similar presentations

OK

Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Free ppt on etiquettes Download ppt on wastewater management Ppt on organic chemistry-some basic principles and techniques Ppt on complex numbers class 11th biology Ppt on energy conservation in india Ppt on 60 years of indian parliament structure Ppt on content development agreement Ppt on security guard services Ppt on professional development Ppt on information security threats