Presentation is loading. Please wait.

Presentation is loading. Please wait.

1998 Cessna 172 S For Training Use Only Obtain actual weights, c.g, fluid capacities and dimensions from the Pilot Operating Handbook for your actual Training.

Similar presentations


Presentation on theme: "1998 Cessna 172 S For Training Use Only Obtain actual weights, c.g, fluid capacities and dimensions from the Pilot Operating Handbook for your actual Training."— Presentation transcript:

1 1998 Cessna 172 S For Training Use Only Obtain actual weights, c.g, fluid capacities and dimensions from the Pilot Operating Handbook for your actual Training airplane. Study Guide

2 This presentation is based on the POH for the 1998 Cessna 172 S, and covers the following sections of that manual. Section 3 Emergency Procedures Section 2 Limitations Section 1 General Section 4 Normal Procedures

3 Remember to verify all information with your actual POH

4 Section 1 Descriptive Data

5 Aircraft Dimensions

6 Length 27 2 Height 8 11 Wingspan 36 1 Wing Area of 174 square feet

7 Engine

8 Manufactured by Textron Lycoming Model O-360-L2A This is a Normally Aspirated, Direct Drive, Air-Cooled, Horizontally- Opposed, Fuel Injected, Four Cylinder Engine with 360 cubic inches displacement RPM

9 Propeller

10 Manufactured by McCauley Model 1A170E/JHA7660 Two Bladed, Fixed Pitch, Aluminum. Diameter is 76

11 Fuel

12 Approved Fuel Grades: 100LL Grade Aviation Fuel (BLUE) 100 Grade Aviation Fuel (GREEN) This is a 152, you will have 13 drains to check

13 Fuel 2 integral tanks [one in each wing] hold the fuel The Un-usable fuel includes fuel in the feed lines within the wing struts, Fuel Reservoir, and associated plumbing The System is Gravity Feed, and uses an Electric Auxiliary Fuel Pump for priming the Fuel Injection system There are 13 Fuel Drains 5 below each wing tank 3 below the nose These drains should be tested for water and contamination prior to flight

14 Fuel This aircraft is equipped with a Fuel Selector Valve that allows Fuel to flow from Left, Right, or Both Fuel tanks. BOTH is the Normal selection. A FUEL SHUT-OFF is also installed in this aircraft for use in Emergency Procedures, or for prolonged Storage.

15 Fuel Total Capacity56 gallons Total Useable53 gallons Total Each Tank28 gallons Total Useable26.5 gallons Non-Useable 3 gallons

16 OIL Grade appropriate to temperature ranges Often this is 15w50 or 20w50 Check Maintenance Records for actual type used in your aircraft.

17 Electrical System System is 28 Volt DC Powered by a belt driven 60 amp alternator Supplying a 24 Volt Battery Battery is located forward of Firewall, Left Side Current is supplied Through Split Primary Bus Bars 1 and 2 Essential Bus is wired between the 2 primaries to energize Master, …..Annunciator, and Interior Lighting Each Primary is connected to an Avionics Bus by the Avionics Master Continued…………….

18 Electrical System Continued Master Switch is a Split Rocker type switch labeled MASTER On is in the up Position, Off is in the Down Position The Right Half is labeled BAT and connects Battery Power to Buses The Left Half is labeled ALT, connects the Alternator Normally, BAT and ALT are used simultaneously BAT can be turned on to check electrical equipment on the ground When the ALT switch is OFF the entire system runs on battery

19 Electrical System Continued LOW VOLTAGE Annunciator, Will Illuminate when Voltage falls below 24.5 Volts OVERVOLTAGE :Alternator Control Unit automatically opens the ALT FLD circuit breaker, Shutting Off the Alternator Under these conditions, with normal power use, a low voltage condition will occur eventually, and the Low Volt annunciator will illuminate The Alternator Control unit may be then reset by resetting the ALT FLD circuit breaker If this occurs a second time, terminate the flight

20 Maximum Certificated Weights Ramp WeightNormal Category2558 Ramp WeightUtility Category2208 Takeoff WeightNormal Category2250 Takeoff WeightUtility Category2200 Landing Weight Normal Category2550 Landing Weight Utility Category2200

21 Baggage Compartment Weights Normal Category –Area 1120 lbs –Area 2 50 lbs –Maximum Combined Area 1 and lbs

22 Baggage Compartment Weights Utility Category In this Category the Rear Seat must be un- occupied, and the baggage compartment must be empty.

23 Standard Airplane Weights Standard Empty Weight1663 Normal Category Useful load 895 Utility Category Useful Load 545

24 Specific Loadings Wing Loading:14.7 lbs./sq. ft. Power Loading:14.2 lbs./sq. ft.

25 Baggage Compartment Weights Relate to Category Normal Category –Area 1120 lbs –Area 2 50 lbs –Maximum Combined Area 1 and lbs Utility Category All Baggage areas must be empty

26 Section 2 Limitations

27 Airspeed Limitations

28 V NE [ Red Line ] Never Exceed Do not exceed this speed. 163

29 Airspeed Limitations V NO [Upper Limit of Green Arc ] Maximum Structural Cruise Exceed only in smooth air. 129

30 Airspeed Limitations VAVA Maneuvering Speed Based on weight. The less weight, the slower the speed lbs 2200 lbs 1900 lbs

31 Airspeed Limitations Flap Extension

32 Airspeed Limitations V FE Do not exceed with Flaps Down 10 degrees 110 Flap Extension Speeds 20 degrees degrees 85

33 Airspeed Limitations Max window open speed Do not exceed with window open 163

34 Airspeed Indicator Markings White Arc Flap Operating Range Upper limit is Vno [max speed flaps extended] Lower limit is max weight Vso [Stall Speed Flaps Landing Configuration]

35 Airspeed Indicator Markings Green Arc Normal Operating Range Upper limit is max structural Cruise, or Vno Lower limit is max weight Vs [Stall Speed No Flaps ]

36 Airspeed Indicator Markings Yellow Arc Caution Range Operation with caution only in smooth air.

37 Airspeed Indicator Markings Red Line 163 Maximum Speed for all operations Fly Faster than this speed, and you are a Test Pilot !

38 Power Plant Limitations Maximum Power 180 BHP

39 Power Plant Limitations Engine Operating Limits for Takeoff and Continuous Operations Maximum Engine Speed 2700 RPM Red Line

40 Power Plant Limitations Static RPM Range at Full Throttle Static RPM range

41 Power Plant Limitations Maximum Oil Temperature 245 degrees (f) or 118 (c)

42 Power Plant Limitations Oil Pressure 20 PSI Minimum 115 PSI Maximum

43 Power Plant Limitations Oil Grade Aviation Grade Straight Mineral Oil or, Ashless Dispersant Oil

44 Power Plant Limitations Engine Oil : 15w50 or 20w50 Check Maintenance Records for actual type used in your aircraft.

45 Power Plant Instrument Markings Tachometer Red Line 2700 RPM

46 Power Plant Instrument Markings Oil Temperature Red line 245 Green Arc

47 Power Plant Instrument Markings Oil Pressure Green Arc 50 – 90 PSI Red Line Minimum 20 PSI Red Line Maximum 115 PSI

48 Power Plant Instrument Markings Fuel Quantity Red Line Gallons Unusable Each Tank

49 Power Plant Instrument Markings Fuel Flow 0 to 12 GPH

50 Power Plant Instrument Markings Vacuum Gage 4.5 to 5.5 PSI

51 Normal and Utility Categories Review of Category of Aircraft

52 Normal and Utility Categories FAR Part 23 Normal Category (a)The normal category is limited to airplanes that have a seating configuration, excluding pilot seats, of nine or less, a maximum certificated takeoff weight of 12,500 pounds or less, and intended for non-acrobatic operation. Non-acrobatic operation includes:

53 Normal and Utility Categories FAR Part 23 Normal Category (1) Any maneuver incident to normal flying; (2) Stalls (except whip stalls); and (3) Lazy eights, chandelles, and steep turns, in which the angle of bank is not more than 60 degrees.

54 Normal and Utility Categories FAR Part 23 Utility Category Airplanes certificated in the utility category may be used in any of the operations covered under paragraph (a) of this section and in limited acrobatic operations. Limited acrobatic operation includes:

55 CG Limits and Categories FAR Part 23 Utility Category (1) Spins (if approved for the particular type of airplane) (2) Lazy eights, chandelles, and steep turns, or similar maneuvers, in which the angle of bank is more than 60 degrees but not more than 90 degrees. (3) Lazy eights, chandelles, and steep turns, in which the angle of bank is not more than 60 degrees.

56 Normal Category Weight Limits Ramp Weight2558 Takeoff Weight2550 Landing Weight2550 Baggage Area Baggage Area 2 50 Combined Baggage 120

57 Normal Category CG Limits Forward Limit: 35 inches aft of datum at 1950 lbs or less To 41 inches aft of datum at 2550 lbs. Aft Limit: 47.3 inches aft of datum at all weights.

58 Utility Category Weight Limits Ramp Weight2208 Takeoff2200 Landing2200 Baggage Area 1 and 2Empty Rear SeatEmpty

59 Utility Category CG Limits Forward Limit: 35 inches aft of datum at 1950 lbs or less To 37.5 inches aft of datum at 2200 lbs. Aft Limit: 40.5 inches aft of datum at all weights.

60 Maneuver Limits Normal Category Any maneuver incidental to normal flying StallsSlow Deceleration Steep Turns 95 knots Chandelles105 knots Lazy Eights105 knots Spins are not mentioned in the POH under Normal Category limits, and are considered prohibited in this category.

61 Maneuver Limits Utility Category Any maneuver incidental to normal flying StallsSlow Deceleration Steep Turns 95 knots Chandelles105 knots Lazy Eights105 knots SpinsSlow Deceleration

62 Flight Load Factor Limits Normal Category Max takeoff weight of 2550 lbs. Flaps Up+3.8g, -1.52g Flaps Down +3.0g The design load factors are 150% of the above, and in all cases the structure meets or exceeds the design loads.

63 Flight Load Factor Limits Utility Category Max takeoff weight of 2200 lbs. Flaps Up+4.0, -1.76g Flaps Down +3.0g The design load factors are 150% of the above, and in all cases the structure meets or exceeds the design loads.

64 Kinds of Operation Limits This airplane is equipped for Day VFR and may be equipped for night VFR and IFR Operations. Flight into known icing conditions is prohibited.

65 Fuel Limitations 2 Standard Tanks 28 gallons each Total Fuel 56 gallons Un-Useable Fuel 3 gallons

66 Fuel Limitations Limitations are show ONLY for Standard Tanks Check the POH for your aircraft to learn what tanks are installed.

67 Fuel limitations To maximize fuel loading, place the fuel selector to Left or Right. This prevents Cross-Feed during fueling There are safety consideration with operating on just one tank.

68 Fuel Limitations Always Takeoff and Land with the Fuel Selector in the BOTH Position.

69 Fuel Limitations If operating only on one tank, Slips and Skid maneuvers are limited to 30 Seconds

70 Fuel Limitations With ¼ Tank or Less, prolonged un-coordinated flight is prohibited when operating on either the Left or Right tank

71 Fuel Limitations Fuel remaining when the quantity indicator shows empty is not useable!

72 Other Limitations Flap Limitations Takeoff Range0 to 10 degrees Landing Range0 to 30 degrees

73 Section 3 Emergency Procedures

74 Airspeeds for Emergency Operation Flaps Up70 Flaps Down65 Engine Failure After Takeoff:

75 Airspeeds for Emergency Operation Maximum Glide Speed:68

76 Airspeeds for Emergency Operation 65 Precautionary Landing with Engine Power:

77 Airspeeds for Emergency Operation Precautionary Landing Without Engine Power: Flaps Up70 Flaps Down65

78 Emergency Procedures Checklists

79 Engine Failure During Takeoff ThrottleIdle BrakesApply FlapsRetract MixtureIdle Cut-off IgnitionOff MasterOff

80 Engine Failure Immediately After Takeoff Airspeed70 flaps up 65 flaps down MixtureIdle Cut-off Fuel ShutoffOff PULL OUT IgnitionOff FlapsAs Required MasterOff DoorsOpen LandStraight Ahead Best Site

81 Engine Failure During Flight [Restart Procedure] Airspeed68 Fuel ShutoffON PUSH ON Fuel SelectorBoth Auxiliary Fuel PumpOn MixtureRich [if Restart has not occurred] If Prop is windmilling, the engine will restart within a few seconds. If Prop has stopped turning, Turn Ignition to START Advance Throttle Slowly from Idle, the adjust mixture for smoothness If The FUEL FLOW drops to Zero, Turn on Auxiliary Fuel Pump

82 Precautionary Landing Without Engine Power Passenger Seat BacksUpright Position Seats and Seat BeltsSecure Airspeed70 Flaps Up 65 Flaps Down MixtureIdle Cut Off Fuel Shutoff ValveOFF PULL OUT IgnitionOff FlapsAs Required [30 deg. advised] MasterOff DoorsOpen TouchdownSlightly Tail Low BrakesApply Heavily

83 Precautionary Landing With Engine Power Passenger Seat BacksUpright Position Seats and Seat BeltsSecure Airspeed65 Flaps20 degrees Selected Field: Fly over to evaluate, Climb to appropriate patter altitude and retract Flaps at safe airspeed Avionics MasterOff Flaps 30 degrees on Final Airspeed65 MasterOff DoorsOpen TouchdownSlightly Tail Low Ignition Off BrakesApply Heavily

84 Ditching Review POH for this Procedure Minimize Descent to 300 FPM at 55 kts Prepare to protect Face with available items Open Doors Activate ELT Touchdown parallel to swells, Level Attitude Evacuate Airplane Use Floatation Devices OUT OF AIRPLANE

85 FIRE During Engine Start [Engine has started] IgnitionStart, continue cranking for a start Set Power to 1800 RPM Follow Shutdown Procedures Evacuate and Inspect for Damage

86 Engine Fire During Start [Engine has not started] Throttle Full Open MixtureIdle Cut-off Cranking Continue Fuel Shut-OffOFF PULL OUT Auxiliary Fuel PumpOff Fire ExtinguisherActivate EngineSecure Master Off IgnitionOff Brake Set Passengers and CrewEvacuate FireExtinguish as Required Inspect for Damage

87 Engine Failure In Flight Mixture Idle Cut Off Fuel ShutoffValveOff Pull OUT Auxiliary Fuel PumpOff Master Off Cabin heat and airOff except overhead vents Airspeed 100 Knots or more to create a non combustible fuel air mixture Forced LandingRefer to Forced Landing Checklist

88 Electrical Fire in Flight MasterOFF AvionicsOFF All Electric OFF[except magnetos] Vents/Cabin Air/HeatClosed Fire ExtinguisherActivate [if available] If Extinguisher is activated, open all vents after fire is out to clear cabin If fire appears to be out, and electrical power is necessary, Master ON Circuit BreakersCheck for faulty circuit Avionics ON, 1 system at a time with a delay in order to evaluate and detect the bad circuit

89 Blocked Static Source [ERRONEOUS INSTRUTMENT READING SUSPECTED] ALTERNATE STATIC PORTOPEN AIRSPEEDCONSULT CALIBRATION TABLE

90 Landing with a Flat Main Tire APPROACH NORMAL TOUCHDOWN –GOOD TIRE FIRST, HOLD AIRPLANE OFF FLAT TIRE AS LONG AS POSSIBLE.

91 Electrical Power Malfunctions Ammeter shows excessive rate of charge AlternatorOFF Alternator BreakerPULL Non-essential equipmentOFF FlightTerminate ASAP

92 Vacuum System Failure Left Vacuum [L VAC] or Right Vacuum [L VAC] Annunciator Illuminates If Vacuum is not within normal limits, a failure has occurred. Partial Panel Procedures will be necessary for continued flight

93 Landing without Elevator Control Trim for level flight Set speed for approximately 65 Once trimmed, do not move elevator trim. Control glide with power only. At flare-out, Power reduction will cause nose to drop… Adjust Trim Full UP during power reduction.

94 SPIN RECOVERY THROTTLEIDLE AILERONSNEUTRAL RUDDERFULL OPPOSITE OF ROTATION CONTROL YOKEFORWARD TO BREAK STALL HOLD THESE CONTROL POSITIONS UNTIL ROTATION STOPS AS ROTATION STOPS, NEUTRALIZE RUDDER RECOVER FROM DIVE SMOOTHLY.

95 Section 4 Normal Procedures

96 Before Start Preflight InspectionComplete Passenger BriefingComplete Seats and BeltsAdjust BrakesTest and Set Electrical EquipmentOff AvionicsOff Fuel SelectorBoth Fuel Shutoff ValveOn PUSH IN Circuit BreakersCheck In

97 Starting Engine [with battery] ThrottleOpen ¼ inch MixtureIdle Cut-Ott Propeller AreaClear Master On Flashing beaconOn Auxiliary Fuel PumpOn MixtureFull Rich until a positive fuel flow, then Idle Cut-Off Auxiliary Fuel PumpOff Ignition Start Mixture Advance as Engine Starts Oil PressureCheck Navigation LightsAs Required AvionicsOn FlapsRetract

98 Starting Engine [Flooded Sart] If Engine floods [over primed] perform the following and then complete the normal start checklist Auxiliary Fuel PumpOFF MixtureIdle Cut-Off ThrottleOpen ½ to Full Throttle IgnitionStart When Engine starts Mixture to Full Rich, Throttle to Idle Promptly.

99 Before Taxi This is not a Cessna Checklist, but will be useful in developing good habits at towered airports. ATIS InformationObtain and copy with I.D. ClearanceObtain and copy, READBACK TRANSPONDERSET Code and Select STBY Taxi InstructionsComply as Instructed

100 Before Takeoff Parking BrakeSet Seats Upright Seat BeltsSecure DoorsClosed and Latched Flight ControlsFree and Correct Flight InstrumentsCheck and Set Fuel QuantityCheck MixtureFull Rich Fuel Selector ValveRecheck Set to BOTH Throttle1800 MagnetosCheck drop <150, Diff. Max of 50 Vacuum GageCheck Annunciator PanelCheck Throttle Check IDLE ThrottleSet to 1000 RPM …..Continued….

101 Before Takeoff…continued Throttle Friction LockAdjust Radios and AvionicsSET NAV/GPS SwitchSET AutopilotOFF Manual TrimSet for Takeoff FlapsSet for Takeoff TRANSPONDERON BrakesRelease TAKEOFF CLEARANCEObtain TRANSPONDERON Select ALT Directional GyroSet when aligned with Runway Strobes and Landing LightOn when taking Active Runway

102 Normal Takeoff Flaps0 – 10 Degrees ThrottleFull Open Mixture Rich (above 3000 ft, Lean for max rpm) Elevator Lift Nose Wheel at 55 Climb Speed70-80 [ 80 Provides better Forward Visibility] FlapsRetract

103 Short Field Takeoff Flaps10 Degrees BrakesApply ThrottleFull Open Mixture Rich (above 3000 ft, Lean for max rpm) BrakesRelease Elevator Slightly Tail Low Climb Speed56 Until Obstacles Cleared FlapsRetract Slowly after reaching 60 knots

104 Enroute Climb Airspeed70-85 ThrottleFull Open MixtureRich (lean above 3000 ft)

105 Cruise PowerSet no more than 75% Elevator TrimAdjust MixtureLean For Performance Desired Arrival ChecklistPrepare

106 Arrival (not a Cessna List) Arrival ATISIn Range Obtain and Copy Approach ControlContact Prior to 20 Miles out ClearanceCopy and READBACK Descent ChecklistPrepare

107 Descent PowerAs required MixtureAdjust, Full Rich at Idle AltimeterSet NAV/GPSSet Fuel Selector ValveBOTH FlapsAs Required within Limits Landing ChecklistPrepare

108 Normal Landing Airspeed65-75 Flaps Up FlapsAs required within Limits Airspeed60-70 Flaps Down TouchdownMain Wheels First Landing RollLower Nose Gently Braking Minimum Required

109 Short Field Landing Airspeed65-75 Flaps Up FlapsAs required within Limits Airspeed61 Flaps Down TouchdownMain Wheels First BrakesApply Heavily FlapsRetract

110 Balked Landing [Go Around] ThrottleFULL OPEN FlapsRetract to 20 Climb Speed60 FlapsRetract to 10 till safe Alt.

111 After Landing RunwayClear and onto Taxiway StrobesOff Landing LightOff TransponderSTBY FlapsRetract RadiosSet Clearance Taxi instruction Parking as required

112 Secure [Shut Down] BrakeSet AvionicsOFF MixtureIdle Cut-Off IgnitionOff MasterOff Control LockInstall Fuel SelectorLeft or Right Check with OPERATOR of the Aircraft regarding this last item.

113 Before we finish, some thoughts on Landings…

114 You have seen the correct technique… Main wheels touchdown 1 st

115 This is what can happen with improper technique.. The nose wheel touches 1 st, followed by Mains, and a bounce results

116 This is what can happen with improper technique.. A bounce occurs, and the airplane balloons up some distance The Pilot over-reacts, and forces the nose to the runway The resultant increase in velocity produces another bounce on touchdown, and the cycle starts again.

117 The third cycle of this phenomena is where accidents typically occur. The nose will contact first (again), But the contact will likely be at such an angle to cause Substantial damage the structure, and result a collapsed Nose wheel assembly This typically also causes the Propeller to strike the ground causing damage to the Propeller and the Engine

118 This is frequently the outcome of the second or third bounce….. Nose wheel touches, and you bounce again.

119 When the bounce occurs, level off, and Re-Land the Airplane normally if sufficient runway length remains. If in doubt, go around after the First Bounce!

120 Get the Right Picture for Landings

121

122

123

124

125 Remember, this is supposed to be fun… and sometimes its for moments like this

126 End of Session Remember to use the approved checklists or Pilot Operating Handbook


Download ppt "1998 Cessna 172 S For Training Use Only Obtain actual weights, c.g, fluid capacities and dimensions from the Pilot Operating Handbook for your actual Training."

Similar presentations


Ads by Google