Download presentation

Presentation is loading. Please wait.

Published byAdrianna Kinslow Modified over 3 years ago

1
**Exam in One week, will cover Chapters 1 and 2. Do Chapter 2 Self test.**

Lecture 6 Exam in One week, will cover Chapters 1 and 2. Do Chapter 2 Self test.

2
Review Review Problems 2.28, 2.30(b) (reviewed other problems, took the entire class)

3
2.28 Compute P for:

5
Problem 2.30

6
**Due Tuesday Read Chapter 3 115-136 Problems 3.1, 3.2, 3.5, 3.6, 3.7**

Lecture 7 Due Tuesday Read Chapter Problems 3.1, 3.2, 3.5, 3.6, 3.7

7
Chapter 3

8
**Nominal interest rate or annual percentage rate (APR)**

r = the nominal interest rate per year M = the compounding frequency or the number of interest periods per year r/M = interest rate per compounding period Effective interest rate = the rate that truly represents the amount of interest earned in a year or some other time period

9
ia = (1 + r/M)M – 1 ia = effective annual interest rate

10
Example If a savings bank pays 1 ½% interest every three months, what are the nominal and effective interest rates per year, Nominal %/year, r = 1 1/2% x 4 = 6% Effective interest rate per year, ia = ( /4)4 –1 = = 6.1% Notice that when M=1, ia = r

11
**Example A loan shark lends money on the following conditions,**

Gives you $50 on Monday, you owe $60 the following Monday Calculate nominal interest rate , r, ? Calculate effective interest rate, ia? If the loan shark started with $50, and stayed in business for one year, how much money would he have in one year?

12
**Example F=P(F/P,i,n) 60=50(F/P,i,1)**

(F/P,i,1)= 1.2, Therefore, i = 20% per week Nominal interest rate per year = 52 weeks x 0.20 = 10.40, 1040% = r Effective interest rate per year ia = ( /52)52 –1 = 13,104 = 1,310,400% F = P(1+i)n = 50(1+0.2)52 = $655,200

13
**Effective interest rate**

Who said crime doesn’t pay? To calculate the effective interest rate for any time duration we have the equation, ia = (1 + r/M)C – 1 ia = (1 + r/CK)C – 1

14
**where M = number of interest periods per year**

(ie quarterly compounding, M = 4; monthly compounding, M = 12) C = number of interest periods per payment period K = number of payment periods per year (ie weekly payments, K = 52, monthly payments K = 12)

15
**Effective Interest Notice that M = CK or M/K = C **

Simple case – compounding and payment are the same

16
**Example M = 12 (monthly payments), r/M = 0.09/12 = 0.0075 per month,**

Borrow $10,000 at yearly nominal rate of 9%. Compounding monthly, payment monthly. You pay on the loan for 6 years. What is your monthly payment? M = 12 (monthly payments), r/M = 0.09/12 = per month, n = 12 months * 6 years = 72 A = P(A/P, i, N) = 10,000 (A/P, , 72) = $180/ month

17
**Example Just using equivalence here. Note that you are really paying.**

(1.0075) = 9.38% and not really 9% as stated.

18
**Harder - cases when compounding and payment occur at different time periods.**

Must convert one to the same time period.

19
**Example Invest at yearly nominal of 9%.**

Compounding monthly, payment quarterly. You will invest for 8 years. If you want to have a fund of $100,000 at the end of the 8 years, how much do you have to invest in each quarter?

20
**Solution M = 12 (monthly compound), K = 4 (quarterly payments).**

Since we compound more frequently than we pay, we use the CK method. C = number of compound periods per payment period = 3. iper = [1 + r / (CK)]C - 1 = [ /12]3 - 1 = .022

21
**Solution N = 4 * 8 years = 32 payments. A = F (A/F, i, N)**

= 2160

22
**Example Invest at yearly nominal 12%.**

Compounding semi annually, payment quarterly and you will invest for 10 years. If you invest $12,000 per quarter, how much will you have at the end of the 10th year?

23
**Solution M = 2 (semi-annual), K = 4 (quarterly payments).**

Two alternate approaches for compounding less frequently that payment. (1) Bank gives us interest on the dollars invested from the point of investment, we use the CK method. This transforms the compound period to the payment period!

24
**Solution Here C = number of compound periods per payment period = ½**

iper = [1 + r / (CK)]C - 1 = [ /2]1/2 - 1 = .0296 compute N = 10 years * 4 payments per year = 40 payments. F = A (F/A, i, N) = 12,000 (F/A, , 40) = 896,654

25
Solution (2) (2) In the case where the bank does not give interest on middle of period deposits we use the lumping method. Lump all payments in an interest period at the end of the interest period. 2 payments in each semi-annual interest period. Payment is now $24,000 semi-annually. This transforms the payment period to the compound period!

26
Solution (2) Now, use the r/M formula. r/M = 0.12/2 = .06. N = 10 years * 2 = 20 payments. F = A (F | A, i, N) = 24,000 (F/A, .06, 20) = 882,854 Note that the bank's strategy in the second case has cost you about $14,000!!

27
**Continuous Compounding**

As an incentive in investment, some institutions offer frequent compounding. Continuous Compounding – as M approaches infinity and r/M approaches zero

28
**Continuous Compounding**

29
**Continuous Compounding**

When K = 1, to find the effective annual interest of continuous compounding ia = er – 1

30
Example $2000 deposited in a bank that pays 5% nominal interest, compounded continuously, how much in two years? ia = e0.05 – 1 = 5.127% F = 2000( )2 = 2210

31
**Now when compounding and payment periods coincide**

Identify number of compounding periods (M) per year Compute effective interest rate per payment period, i = r/M Determine number of compounding periods, N = M x (number of years)

32
**Compute effective interest rate per payment period **

When compounding and payment periods don’t coincide, they must be made uniform before equivalent analysis can continue. Identify M, K, and C. Compute effective interest rate per payment period For discrete compounding, i = (1 + r/M)C – 1 For continuous compounding, i = er/K - 1

33
Equivalence Find total number of payment periods, N = K x (number of years) Use i and N with the appropriate interest formula

34
Example Equal quarterly deposits of $1000, with r = 12% compounded weekly, find the balance after five years M = 52 compounding periods/year K = 4 payment periods per year C = 13 interest periods/payment period

35
**Example i = (1 + .12/52)13 – 1 =3.042% per quarter**

N = K x (5) = 4 x 5 = 20 F = A(F/A, 3.042%,20) = $26,985

36
Example You are deciding whether to invest $20,000 into your home at 6.5% continuously compounding, or the same amount into a CD compounded semi-annually at 7%, which is the wiser investment, assume 10 years?

37
**Home Investment r = 6.5% K = 1 ia = er/K – 1 = e0.065 –1 = 6.7%**

F = 20,000( )10 = $38,254

38
**CD Investment r = 7% M = 2 ia = (1 + r/M)M – 1**

= (1 + 7%/2)2 – 1 = 7.12% F = 20,000( )10 = $39,787

Similar presentations

OK

(c) 2001 Contemporary Engineering Economics 1 Chapter 11 Understanding Money and Its Management Nominal and Effective Interest Rates Equivalence Calculations.

(c) 2001 Contemporary Engineering Economics 1 Chapter 11 Understanding Money and Its Management Nominal and Effective Interest Rates Equivalence Calculations.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on representation of rational numbers on number line Ppt on measures to control environmental pollution Ppt on frame of reference Ppt on product advertising online Ppt on network devices used in wireless communication Ppt on fibonacci numbers in nature Ppt on limits and continuity lecture Ppt on tunnel diode operation Ppt on safety in cement industry Ppt on new technology in electrical engineering