Download presentation

Presentation is loading. Please wait.

Published byYuliana Norrington Modified over 3 years ago

1
HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

2
Specifications v2.0 Interface between machine vacuum and Atmospheric pressure 10 -8 mbar / P atm Protective atmosphere !!! Diameter 60 mm (Updated) Thickness 5 mm (Updated) Resist to a proton beam size on the window : 1 = 0.5 mm Beam Size at the TT66 Vacuum Window, C. Hessler, 26.02.2010 2Michael MONTEIL- 16 March 2010

3
Window geometry – C-C option Carbon/Carbon composite: 1501 G from SGL Cylindrical window Diameter 80 mm (Updated) – Aperture 60 mm (Updated) Thickness: 0.5 cm (Updated) Aperture ( flange internal diameter ): 60 mm (Updated) 3Michael MONTEIL- 16 March 2010

4
Solutions #1 for C-C tightness problem: Differential vacuum (V1.0) 1 Window C-C – Pumping speed needed: 8.4 x 10 9 l/s … 2 Windows C-C with differential pumping – Pumping speed needed: 8.4 x 10 3 l/s … 3 Windows C-C with differential pumping – Pumping speed needed: 8.4 x 10 1 l/s OK 4Michael MONTEIL- 16 March 2010

5
Solutions #1 for C-C tightness problem: Differential vacuum (New values V2.0) 1 Window C-C – Pumping speed needed: 2.3 x 10 8 l/s … 2 Windows C-C with differential pumping – Pumping speed needed: 8.94 x 10 2 l/s OK ! 3 Windows C-C with differential pumping – Pumping speed needed: 13 l/s Too low ?! 5Michael MONTEIL- 16 March 2010

6
Solutions #1 What about radiations in this area ? – Possible maintenance needed on the roots pump… Protective atmosphere Decreasing pressure in Vacuum side with serial pumps Michael MONTEIL- 16 March 20106

7
7 P2 : Roots pump 100 –> 1500 m 3 /h 10 -3 -> 10 Bar P3 : Ion pump 400 l/s Reference

8
Solutions #2 for C-C tightness problem: Add a Graphite foil (v1.0) 8Michael MONTEIL- 16 March 2010 Solution #3 : Tight steelring with a C-C plate (v1.0)

9
Solution #4 : Beryllium Metal -> Tight !! No differential pumping Simple window assembly Thin thickness Toxicity Price Michael MONTEIL- 16 March 20109

10
Solution #5 : Be + C-C Solution #4 but the pressure load is supported by a C-C plate Simple window assembly Thin thickness (no differential pumping…) Be cannot pollute vacuum unless C-C fail Tight Price… but compare to intermediate Vac. Pumps price ? Michael MONTEIL- 16 March 201010

11
Solutions - Sum-up #1: C-C (Differential pumping) – Protective atm (Nitrogen ?) – Radiations? #2: C-C + Graphite foil (useless now) #3: Tight steel ring with a C-C plate #4: Beryllium – Safety problem #5: C-C + Beryllium Michael MONTEIL- 16 March 201011

12
ANSYS Study - Solutions #1 stresses and deflection - C-C under P = 1.4atm Linear circular fixed support 2 planes of symmetry Geometry – Diameter 80 mm – Thickness: 5 mm – Aperture: 60 mm Pressure 1.4 bar 12Michael MONTEIL- 16 March 2010

13
ANSYS Study - Solutions #1 stresses and deflection - C-C under P = 1.4atm Orthotropic properties : 18 plies [0°/90°…] Smooth and continuous temperature distribution Through-thickness energy deposition Coefficient of Thermal Expansion varying with temperature and directions 13Michael MONTEIL- 16 March 2010

14
C-C - Pressure load - Deflection 14Michael MONTEIL- 16 March 2010 7.4 μm

15
C-C - Pressure load – Von-Mises 15Michael MONTEIL- 16 March 2010 5.9 Mpa

16
C-C - Pressure load – Tsaï-Wu 16Michael MONTEIL- 16 March 2010

17
C-C - Thermal load ANSYS input = FLUKA output Radial C-C | 1 = 0.5 mm | 1.7e11 p+ | 288 bunches Axisymmetrical radial temperature field Depth R (cm) T (°C) Z (cm) T (°C) 17Michael MONTEIL- 16 March 2010

18
C-C - Pressure + Thermal load – Deflection 18Michael MONTEIL- 16 March 2010 10.6 μm

19
C-C - Pressure + Thermal load – Von-Mises 19Michael MONTEIL- 16 March 2010 31 Mpa

20
C-C - Pressure + Thermal load – Tsaï- Wu 20Michael MONTEIL- 16 March 2010

21
ANSYS Study - Solutions #4 stresses and deflection - Be under P = 1.4atm Linear circular fixed support 2 planes of symmetry Geometry – Diameter 80 mm – Thickness: 0.254 mm – Aperture: 60 mm Pressure 1.4 bar 21Michael MONTEIL- 16 March 2010

22
ANSYS Study - Solutions #4 stresses and deflection - Be under P = 1.4atm Smooth and continuous temperature distribution Through-thickness energy deposition Coefficient of Thermal Expansion varying with temperature Be: – Poissons ratio = 0.1 – High R e = 275 Mpa – High R m = 551 MPa 22Michael MONTEIL- 16 March 2010

23
Be - Pressure load - Deflection 23Michael MONTEIL- 16 March 2010 8.1 mm

24
Be - Pressure load – Von-Mises 24Michael MONTEIL- 16 March 2010 319 Mpa

25
Be - Pressure load – Safety factor Ult. Strength Michael MONTEIL- 16 March 201025 1.7

26
Be - Thermal load ANSYS input = FLUKA output Be | 1 = 0. 5 mm | 1.7e11 p+ | 288 bunches Axisymmetrical radial temperature field Z (cm) T (°C) 26Michael MONTEIL- 16 March 2010 Z (cm) Radial Be T (°C)

27
Be - Pressure + Thermal load – Deflection 27Michael MONTEIL- 16 March 2010 8 mm

28
Be - Pressure + Thermal load – Von-Mises 28Michael MONTEIL- 16 March 2010 315 Mpa

29
Be - Pressure + Thermal load – Safety factor Ult. Strength Michael MONTEIL- 16 March 201029 1.7

30
ANSYS Study - Solutions #5 stresses and deflection - C-C+Be under P = 1.4atm 2 Studies – C-C (See Solution #4) Pressure load Pressure + Temperature loads – Be (Following slides) Flattered on a C-C plate (Fixed support) and apply pressure load on the other side Flattered on a C-C plate (Fixed support) and apply pressure load on the other side + Temperature load 2 planes of symmetry Geometry – Diameter 80 mm – Thickness C-C: 5 mm Be: 0.254 mm – Aperture: 60 mm Pressure 1.4 bar 30Michael MONTEIL- 16 March 2010

31
ANSYS Study - Solutions #5 stresses and deflection - C-C+Be under P = 1.4atm Smooth and continuous temperature distribution Through-thickness energy deposition Coefficient of Thermal Expansion varying with temperature 31Michael MONTEIL- 16 March 2010

32
32 Be (flatter on C-C) - Pressure load – Deformation

33
Be (flatter on C-C) - Pressure load – Von-Mises Michael MONTEIL- 16 March 201033

34
Thermal load ANSYS input = FLUKA output Radial C-C C-C + Be | 1 = 0.5 mm | 1.7e11 p+ | 288 bunches Axisymmetrical radial temperature field Depth C-C T (°C) Z (cm) T (°C) 34Michael MONTEIL- 16 March 2010 Z (cm) Radial Be

35
Be (flatter on C-C) - Pressure + Thermal load – Deflection Michael MONTEIL- 16 March 201035 x 2.6e+002

36
Be (flatter on C-C) - Pressure + Thermal load – Von-Mises Michael MONTEIL- 16 March 201036

37
Be (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. Strength Michael MONTEIL- 16 March 201037

38
To do : Rough mechanical design – Solution #1 C-C with differential pumping Maybe coating 15 cm length between upstream and downstream sides – Solution #5 C-C + Be Order quotes of Be Same design that window in TI8, TI2, TT41 (Design by Kurt Weiss, Luca Bruno and Jose Miguel Jimenez) but replacing the Ti foil by a Be foil Nickel-coating to prevent oxidation on Be ? 15 cm length between upstream and downstream sides 38Michael MONTEIL- 16 March 2010

39
39

40
Back up slides Michael MONTEIL- 16 March 201040

41
C-C 1.4 bar diameter 146 mm (v1.0) Michael MONTEIL- 16 March 201041

42
Pressure load - Deflection 42Michael MONTEIL- 16 March 2010

43
Pressure load – Von-Mises 43Michael MONTEIL- 16 March 2010

44
Pressure load – Tsaï-Wu 44Michael MONTEIL- 16 March 2010

45
Thermal load ANSYS input = FLUKA output Radial C-C | 1 = 0.25 mm | 1.7e11 p+ Axisymmetrical radial temperature field Depth R (cm) T (°C) Z (cm) T (°C) 45Michael MONTEIL- 16 March 2010

46
Pressure + Thermal load – Deflection 46Michael MONTEIL- 16 March 2010

47
Pressure + Thermal load – Von-Mises 47Michael MONTEIL- 16 March 2010

48
Pressure + Thermal load – Tsaï-Wu 48Michael MONTEIL- 16 March 2010

49
Be Only Pressure 1 bar instead of 1.4 bar Michael MONTEIL- 16 March 201049

50
Pressure load - Deflection 50Michael MONTEIL- 16 March 2010

51
Pressure load – Von Mises 51Michael MONTEIL- 16 March 2010

52
Pressure load – Safety factor Ult. Strength Michael MONTEIL- 16 March 201052

53
Thermal load ANSYS input = FLUKA output C-C | 1 = 0.25 mm | 1.7e11 p+ Axisymmetrical radial temperature field Z (cm) T (°C) 53Michael MONTEIL- 16 March 2010 Z (cm) Radial Be T (°C)

54
Pressure + Thermal load – Deflection 54Michael MONTEIL- 16 March 2010

55
Pressure + Thermal load – Von-Mises 55Michael MONTEIL- 16 March 2010

56
Pressure + Thermal load – Safety factor Ult.Strength Michael MONTEIL- 16 March 201056

Similar presentations

Presentation is loading. Please wait....

OK

Clock will move after 1 minute

Clock will move after 1 minute

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on conservation of momentum physics Ppt on data collection methods in research methodology Ppt on international maritime organisation Ppt on properties of triangles for class 7th Ppt on image processing in matlab Ppt on 2nd world war video 360 degree customer view ppt on mac Ppt on current account convertibility Ppt on horizontal axis wind turbine Ppt on acute coronary syndrome protocol