Presentation is loading. Please wait.

Presentation is loading. Please wait.

Nucleic Acids, Proteins, and Enzymes 3. Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules.

Similar presentations


Presentation on theme: "Nucleic Acids, Proteins, and Enzymes 3. Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules."— Presentation transcript:

1 Nucleic Acids, Proteins, and Enzymes 3

2 Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

3 Chapter 3 Opening Question How does an understanding of proteins and enzymes help to explain how aspirin works?

4 Concept 3.1 Nucleic Acids Are Informational Macromolecules Nucleic acids are polymers specialized for storage, transmission, and use of genetic information. DNA = deoxyribonucleic acid RNA = ribonucleic acid Monomers: Nucleotides

5 Concept 3.1 Nucleic Acids Are Informational Macromolecules Nucleotide: Pentose sugar + N-containing base + phosphate group Nucleosides: Pentose sugar + N-containing base

6 Concept 3.1 Nucleic Acids Are Informational Macromolecules Bases: Pyrimidinessingle rings Purinesdouble rings Sugars: DNA contains deoxyribose RNA contains ribose

7 Figure 3.1 Nucleotides Have Three Components

8 Concept 3.1 Nucleic Acids Are Informational Macromolecules Nucleotides bond in condensation reactions to form phosphodiester linkages. Nucleic acids grow in the 5 to 3 direction.

9 Figure 3.2 Linking Nucleotides Together

10 Concept 3.1 Nucleic Acids Are Informational Macromolecules Oligonucleotides have about 20 monomers, and include small RNA molecules important for DNA replication and gene expression. DNA and RNA are polynucleotides, the longest polymers in the living world.

11 Table 3.1 Distinguishing RNA from DNA

12 Concept 3.1 Nucleic Acids Are Informational Macromolecules Complementary base pairing: adenine and thymine always pair (A-T) cytosine and guanine always pair (C-G)

13 Concept 3.1 Nucleic Acids Are Informational Macromolecules Base pairs are linked by hydrogen bonds. There are so many hydrogen bonds in DNA and RNA that they form a fairly strong attraction, but not as strong as covalent bonds. Thus, base pairs can be separated with only a small amount of energy.

14 Concept 3.1 Nucleic Acids Are Informational Macromolecules RNA is usually single-stranded, but may be folded into 3-D structures, by hydrogen bonding. Folding occurs by complementary base pairing, so structure is determined by the order of bases.

15 Figure 3.3 RNA (Part 1)

16 Figure 3.3 RNA (Part 2)

17 Concept 3.1 Nucleic Acids Are Informational Macromolecules DNAtwo polynucleotide strands form a ladder that twists into a double helix. Sugar-phosphate groups form the sides of the ladder, the hydrogen-bonded bases form the rungs.

18 Figure 3.4 DNA (Part 1)

19 Figure 3.4 DNA (Part 2)

20 Concept 3.1 Nucleic Acids Are Informational Macromolecules DNA is an informational molecule: genetic information is in the sequence of base pairs. DNA has two functions: Replication Gene expressionbase sequences are copied to RNA, and specify amino acids sequences in proteins.

21 Concept 3.1 Nucleic Acids Are Informational Macromolecules DNA replication and transcription depend on the base pairing: 5-TCAGCA-3 3-AGTCGT-5 3-AGTCGT-5 transcribes to RNA with the sequence 5-UCAGCA-3.

22 Concept 3.1 Nucleic Acids Are Informational Macromolecules Genomecomplete set of DNA in a living organism GenesDNA sequences that encode specific proteins and are transcribed into RNA Not all genes are transcribed in all cells of an organism.

23 Figure 3.5 DNA Replication and Transcription

24 Concept 3.1 Nucleic Acids Are Informational Macromolecules DNA base sequences reveal evolutionary relationships. Closely related living species should have more similar base sequences than species that are more distantly related. Scientists are now able to determine and compare entire genomes of organisms to study evolutionary relationships.

25 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Major functions of proteins: Enzymescatalytic proteins Defensive proteins (e.g., antibodies) Hormonal and regulatory proteinscontrol physiological processes Receptor proteinsreceive and respond to molecular signals Storage proteins store amino acids

26 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Structural proteinsphysical stability and movement Transport proteins carry substances (e.g., hemoglobin) Genetic regulatory proteins regulate when, how, and to what extent a gene is expressed

27 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Protein monomers are amino acids. Amino and carboxylic acid functional groups allow them to act as both acid and base. The R group differs in each amino acid.

28 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Only 20 amino acids occur extensively in the proteins of all organisms. They are grouped according to properties conferred by the R groups.

29 Table 3.2 The Twenty Amino Acids in Proteins (Part 1)

30 Table 3.2 The Twenty Amino Acids in Proteins (Part 2)

31 Table 3.2 The Twenty Amino Acids in Proteins (Part 3)

32 Table 3.2 The Twenty Amino Acids in Proteins (Part 4)

33 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Cysteine side chains can form covalent bonds a disulfide bridge, or disulfide bond.

34 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Oligopeptides or peptidesshort polymers of 20 or fewer amino acids (some hormones and signaling molecules) Polypeptides or proteins range in size from insulin, which has 51 amino acids, to huge molecules such as the muscle protein titin, with 34,350 amino acids.

35 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Amino acids are linked in condensation reactions to form peptide linkages or bonds. Polymerization takes place in the amino to carboxyl direction.

36 Figure 3.6 Formation of a Peptide Linkage

37 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Primary structure of a proteinthe sequence of amino acids

38 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Secondary structureregular, repeated spatial patterns in different regions, resulting from hydrogen bonding α (alpha) helixright-handed coil β (beta) pleated sheettwo or more polypeptide chains are extended and aligned

39 Figure 3.7 B, C The Four Levels of Protein Structure

40 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Tertiary structurepolypeptide chain is bent and folded; results in the definitive 3-D shape The outer surfaces present functional groups that can interact with other molecules.

41 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Interactions between R groups determine tertiary structure. Disulfide bridges hold a folded polypeptide together Hydrogen bonds stabilize folds Hydrophobic side chains can aggregate van der Waals interactions between hydrophobic side chains Ionic interactions form salt bridges

42 Figure 3.8 Noncovalent Interactions between Proteins and Other Molecules

43 Figure 3.9 The Structure of a Protein

44 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Secondary and tertiary protein structure derive from primary structure. Denaturingheat or chemicals are used to disrupt weaker interactions in a protein, destroying secondary and tertiary structure. The protein can return to normal when cooled all the information needed to specify the unique shape is contained in the primary structure.

45 Figure 3.10 Primary Structure Specifies Tertiary Structure (Part 1)

46 Figure 3.10 Primary Structure Specifies Tertiary Structure (Part 2)

47 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Quaternary structuretwo or more polypeptide chains (subunits) bind together by hydrophobic and ionic interactions, and hydrogen bonds. These weak interactions allow small changes that aid in the proteins function.

48 Figure 3.7 E The Four Levels of Protein Structure

49 Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles Factors that can disrupt the interactions that determine protein structure (denaturing): Temperature Concentration of H + High concentrations of polar substances Nonpolar substances

50 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Living systems depend on reactions that occur spontaneously, but at very slow rates. Catalysts are substances that speed up reactions without being permanently altered. No catalyst makes a reaction occur that cannot otherwise occur. Most biological catalysts are proteins (enzymes); a few are RNA molecules (ribozymes).

51 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions In some exergonic reactions there is an energy barrier between reactants and products. An input of energy (the activation energy or E a ) will put reactants into a transition state.

52 Figure 3.11 Activation Energy Initiates Reactions (Part 1)

53 Figure 3.11 Activation Energy Initiates Reactions (Part 2)

54 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Enzymes lower the activation energythey allow reactants to come together and react more easily. Example: A molecule of sucrose in solution may hydrolyze in about 15 days; with sucrase present, the same reaction occurs in 1 second!

55 Figure 3.12 Enzymes Lower the Energy Barrier

56 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Enzymes are highly specificeach one catalyzes only one chemical reaction. Reactants are substrates: they bind to a specific site on the enzymethe active site. Specificity results from the exact 3-D shape and chemical properties of the active site.

57 Figure 3.13 Enzyme Action

58 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions The enzyme–substrate complex (ES) is held together by hydrogen bonding, electrical attraction, or temporary covalent bonding. The enzyme is not changed at the end of the reaction.

59 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Enzymes may use one or more mechanisms to catalyze a reaction: Inducing strainbonds in the substrate are stretched, putting it in an unstable transition state.

60 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Substrate orientationsubstrates are brought together so that bonds can form. Adding chemical groupsR groups may be directly involved in the reaction.

61 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Binding of substrate to enzyme is like a baseball in a catchers mitt. The enzyme changes shape to make the binding tightinduced fit.

62 Figure 3.14 Some Enzymes Change Shape When Substrate Binds to Them

63 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Some enzymes require ions or other molecules in order to function: Cofactorsinorganic ions Coenzymes add or remove chemical groups from the substrate. They can participate in many different reactions. Prosthetic groups (non-amino acid groups) permanently bound to their enzymes.

64 Table 3.3 Some Examples of Nonprotein Partners of Enzymes

65 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Rates of catalyzed reactions: There is usually less enzyme than substrate present, so reaction rate levels off when the enzyme becomes saturated. Saturatedall enzyme molecules are bound to substrate molecules.

66 Figure 3.15 Catalyzed Reactions Reach a Maximum Rate

67 Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions Maximum rate is used to calculate enzyme efficiencymolecules of substrate converted to product per unit time (turnover). It ranges from 1 to 40 million molecules per second!

68 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Enzyme-catalyzed reactions are part of metabolic pathwaysthe product of one reaction is a substrate for the next.

69 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Homeostasisthe maintenance of stable internal conditions Cells can regulate metabolism by controlling the amount of an enzyme. Cells often have the ability to turn synthesis of enzymes off or on.

70 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Chemical inhibitors can bind to enzymes and slow reaction rates. Natural inhibitors regulate metabolism; artificial inhibitors are used to treat diseases, kill pests, and study enzyme function.

71 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Irreversible inhibitioninhibitor covalently binds to a side chain in the active site. The enzyme is permanently inactivated.

72 Figure 3.16 Irreversible Inhibition

73 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Reversible inhibition (more common in cells): A competitive inhibitor competes with natural substrate for active site. A noncompetitive inhibitor binds at a site distinct from the active sitethis causes change in enzyme shape and function.

74 Figure 3.17 Reversible Inhibition (Part 1)

75 Figure 3.17 Reversible Inhibition (Part 2)

76 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Allosteric regulationnon-substrate molecule binds a site other than the active site (the allosteric site) The enzyme changes shape, which alters the chemical attraction (affinity) of the active site for the substrate. Allosteric regulation can activate or inactivate enzymes.

77 Figure 3.18 Allosteric Regulation of Enzyme Activity

78 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Protein kinases are enzymes that regulate responses to the environment by organisms. They are subject to allosteric regulation. The active form regulates the activity of other enzymes, by phosphorylating allosteric or active sites on the other enzymes.

79 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Metabolic pathways: The first reaction is the commitment stepother reactions then happen in sequence. Feedback inhibition (end-product inhibition) the final product acts as a noncompetitive inhibitor of the first enzyme, which shuts down the pathway.

80 Figure 3.19 Feedback Inhibition of Metabolic Pathways

81 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes pH affects enzyme activity: Acidic side chains generate H + and become anions. Basic side chains attract H + and become cations.

82 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Example: glutamic acidCOOH glutamic acidCOO – + H + The law of mass actionthe higher the H + concentration, the more reaction is driven to the left to the less hydrophilic form. This can affect enzyme shape and function.

83 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Protein tertiary structure (and thus function) is very sensitive to the concentration of H + (pH) in the environment. All enzymes have an optimal pH for activity.

84 Figure 3.20 A Enzyme Activity Is Affected by the Environment

85 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Temperature affects enzyme activity: Warming increases rates of chemical reactions, but if temperature is too high, non-covalent bonds can break and inactivate enzymes. All enzymes have an optimal temperature for activity.

86 Figure 3.20 B Enzyme Activity Is Affected by the Environment

87 Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes Isozymes catalyze the same reaction but have different composition and physical properties. Isozymes may have different optimal temperatures or pH, allowing an organism to adapt to changes in its environment.

88 Answer to Opening Question Aspirin binds to and inhibits the enzyme cyclooxygenase. Cyclooxygenase catalyzes the commitment step for metabolic pathways that produce: Prostaglandinsinvolved in inflammation and pain Thromboxanesstimulate blood clotting and constriction of blood vessels

89 Figure 3.21 Aspirin: An Enzyme Inhibitor

90 Answer to Opening Question Aspirin binds at the active site of cyclooxygenase and transfers an acetyl group to a serine residue. Serine becomes more hydrophobic, which changes the shape of the active site and makes it inaccessible to the substrate.

91 Figure 3.22 Inhibition by Covalent Modification (Part 1)

92 Figure 3.22 Inhibition by Covalent Modification (Part 2)


Download ppt "Nucleic Acids, Proteins, and Enzymes 3. Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules."

Similar presentations


Ads by Google