Download presentation

Presentation is loading. Please wait.

Published byGisselle Gregory Modified over 2 years ago

1
SJTU1 Chapter 3 Methods of Analysis

2
SJTU2 So far, we have analyzed relatively simple circuits by applying Kirchhoffs laws in combination with Ohms law. We can use this approach for all circuits, but as they become structurally more complicated and involve more and more elements, this direct method soon becomes cumbersome. In this chapter we introduce two powerful techniques of circuit analysis: Nodal Analysis and Mesh Analysis. These techniques give us two systematic methods of describing circuits with the minimum number of simultaneous equations. With them we can analyze almost any circuit by to obtain the required values of current or voltage.

3
SJTU3 Nodal Analysis Steps to Determine Node Voltages: 1.Select a node as the reference node(ground), define the node voltages 1, 2,… n-1 to the remaining n-1nodes. The voltages are referenced with respect to the reference node. 2.Apply KCL to each of the n-1 independent nodes. Use Ohms law to express the branch currents in terms of node voltages. 3.Solve the resulting simultaneous equations to obtain the unknown node voltages.

4
SJTU4 Fig. 3.2 Typical circuit for nodal analysis

5
SJTU5 So at node 1 and node 2, we can get the following equations.

6
SJTU6 In terms of the conductance, equations become Can also be cast in matrix form as Some examples

7
SJTU7 Fig. 3.5 For Example 3.2: (a) original circuit, (b) circuit for analysis

8
SJTU8 Nodal Analysis with Voltage Sources(1) Case 1 If a voltage source is connected between the reference node and a nonreference node, we simply set the voltage at the nonreference node equal to the voltage of the voltage source. As in the figure right:

9
SJTU9 Nodal Analysis with Voltage Sources(2) Case 2 If the voltage source (dependent or independent) is connected between two nonreference nodes, the two nonreference nodes form a supernode; we apply both KVL and KCL to determine the node voltages. As in the figure right:

10
SJTU10 Case 3 If a voltage source (dependent or independent) is connected with a resistor in series, we treat them as one branch. As in the figure right: Nodal Analysis with Voltage Sources(3) i V 11 V 22

11
SJTU11 Nodal Analysis with Voltage Sources(3) Example P113

12
SJTU12 Mesh Analysis Steps to Determine Mesh Currents: 1.Assign mesh currents i 1, i 2,…i n to the n meshes. 2.Apply KVL to each of the n meshes. Use Ohms law to express the voltages in terms of the mesh currents. 3.Solve the resulting n simultaneous equations to get the mesh currents.

13
SJTU13 Fig A circuit with two meshes

14
SJTU14 In matrix form:

15
SJTU15 Fig For Example 3.5

16
SJTU16 Mesh Analysis with Current Sources(1) Case 1 When a current source exists only in one mesh: Consider the figure right.

17
SJTU17 Case 2 When a current source exists between two meshes:Consider the figure right. 2 solutions: 1.Set v as the voltage across the current source, then add a constraint equation. 2.Use supermesh to solve the problem. Mesh Analysis with Current Sources(2)

18
SJTU18 Solution 1: Solution 2: supermesh Note: 1, The current source in the supermesh is not completely ignored; it provides the constraint equation necessary to solve for the mesh current. 2, A supermesh has no current of its own. 3, A supermesh requires the application of both KVL and KCL.

19
SJTU19 Fig For Example 3.7 supermesh

20
SJTU20 Fig For Example 3.10

21
SJTU21 Fig For Example 3.10; the schematic of the circuit in Fig

22
SJTU22 Nodal Versus Mesh Analysis Both provide a systematic way of analyzing a complex network. When is the nodal method preferred to the mesh method? 1.A circuit with fewer nodes than meshes is better analyzed using nodal analysis, while a circuit with fewer meshes than nodes is better analyzed using mesh analysis. 2.Based on the information required. Node voltages required nodal analysis Branch or mesh currents required mesh analysis

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google