Presentation is loading. Please wait.

Presentation is loading. Please wait.

Prevention of Over - Pressurization Training Package TP 05/05 1 Asia Industrial Gases Association 298 Tiong Bahru Road, #20-01 Central Plaza, Singapore.

Similar presentations


Presentation on theme: "Prevention of Over - Pressurization Training Package TP 05/05 1 Asia Industrial Gases Association 298 Tiong Bahru Road, #20-01 Central Plaza, Singapore."— Presentation transcript:

1 Prevention of Over - Pressurization Training Package TP 05/05 1 Asia Industrial Gases Association 298 Tiong Bahru Road, #20-01 Central Plaza, Singapore 168730 Internet: http//www.asiaiga.org

2 Over-Pressurization 2 Prevention of Over - Pressurization Disclaimer All publications of AIGA or bearing AIGA’s name contain information, including Codes of Practice, safety procedures and other technical information that were obtained from sources believed by AIGA to be reliable and/ or based on technical information and experience currently available from members of AIGA and others at the date of the publication. As such, we do not make any representation or warranty nor accept any liability as to the accuracy, completeness or correctness of the information contained in these publications. While AIGA recommends that its members refer to or use its publications, such reference to or use thereof by its members or third parties is purely voluntary and not binding. AIGA or its members make no guarantee of the results and assume no liability or responsibility in connection with the reference to or use of information or suggestions contained in AIGA’s publications. AIGA has no control whatsoever as regards, performance or non performance, misinterpretation, proper or improper use of any information or suggestions contained in AIGA’s publications by any person or entity (including AIGA members) and AIGA expressly disclaims any liability in connection thereto. AIGA’s publications are subject to periodic review and users are cautioned to obtain the latest edition.  AIGA 2005 - AIGA grants permission to reproduce this publication provided the Association is acknowledged as the source Asia Industrial Gases Association 298 Tiong Bahru Road, #20-01 Central Plaza, Singapore 168730 Internet: http//www.asiaiga.org

3 Over-Pressurization 3 What is Over-Pressurization?  The increase of pressure inside a piece of equipment beyond its ability to hold that pressure.  Vessels and tanks  Cylinders and bottles  Compressors and pumps  Piping and tubing  Hoses and flex joints  Instruments and valves

4 Over-Pressurization 4 This could hurt. Now imagine if you were near a vessel, pipe or cylinder when it ruptured! Imagine - Blowing Up a Balloon

5 Over-Pressurization 5 Over-Pressurization Hazards  Ruptured process vessels, cylinders, piping  Whipping hoses  Flying debris and shrapnel  Serious injury  Death

6 Over-Pressurization 6 Hazardous result An ammonia cylinder that failed due to overfilling & hydraulic-king

7 Over-Pressurization 7 Over-Pressurization Kills  Incident 1: Liquid trapped in the ball of a ball valve expanded, causing the valve to come apart. Worker dies when contents of CO2 storage tank released in his direction.  Incident 2: A chlorine cylinder ruptures during fill procedure, killing worker in the same room.

8 Over-Pressurization 8 Over-Pressurization Kills  Over-pressurization can occur at your location too!

9 Over-Pressurization 9 Causes of Over-Pressurization  Faulty process control  Process upsets  Trapped liquefied gases  In a pipe or hose between two closed valves  In a ball or gate valve not designed to relieve internal pressure

10 Over-Pressurization 10 Causes of Over-Pressurization  Poor equipment and process design  Uncontrolled modifications  Human ignorance  Human error

11 Over-Pressurization 11 Faulty Process Control  Improperly calibrated control devices (temperature, pressure, flow, level…)  Malfunctioning control sensing device such as:  Isolation valves closed  Inlet ports blocked  Devices damaged

12 Over-Pressurization 12 Faulty Process Control (cont’d)  Malfunctioning control valves  Sticking control valves, solenoids  Closed or throttled isolation or bypass valves

13 Over-Pressurization 13 Process Upsets  Sudden flow rate, temperature or pressure changes  Process operation outside of established operating limits

14 Over-Pressurization 14 Trapped Liquefied Gases  Expand as they warm and vaporize  Pressure rises can exceed most process valves, piping and hoses pressure ratings  If no vapour in the trapped space, hydraulic loading can occur - leads to extremely high pressures in a very short time

15 Over-Pressurization 15 Liquefied Gases  If allowed to reach ambient (room) temperatures:  Liquid carbon dioxide could reach 1,100 psi!*  Liquid gases like helium, hydrogen, nitrogen, oxygen and argon could reach 22,000 to 50,000 psi!* * If the container could hold the pressure.

16 Over-Pressurization 16 Liquefied Gases (cont’d)  Do not over-fill a cylinder or tank  Maintain proper vapour space  Do not trap liquid gases  Must be able to relieve pressure

17 Over-Pressurization 17 Liquefied Gas (cont’d)  Expand 700 to 800 times in volume as they suddenly change (“flash”) from a liquid state into a gas.  Results in a tremendous force similar to that released in an explosion.

18 Over-Pressurization 18 Trapped Liquid With vapour As temperature rises, a given mass of liquid can require more room (its density changes)... Vapour can be compressed. So it makes room for the expanding liquid. Pressure rises gradually with temperature. Eventually, most liquefied gases will develop pressures that will rupture the container.

19 Over-Pressurization 19 Trapped Liquid Without vapour Liquid cannot be compressed, so as it gets bigger, it has to go somewhere! It quickly develops extremely high pressure. As temperature rises, a given mass of liquid can require more room (its density changes)...

20 Over-Pressurization 20 With and Without vapour Heat Input Pressure (psig) Liquid and vapour pressure rises gradually, but still reaches higher pressures than what typical equipment can contain. The pressure of liquid without vapour rises quickly.

21 Over-Pressurization 21 Ball Valve Hazard Potential (Side View) Seal Stem Downstream (Lower Pressure) Upstream (Higher Pressure) Trapped Liquid Valve Body

22 Over-Pressurization 22 Hazardous Result (Side View)

23 Over-Pressurization 23 Downstream (Lower Pressure) Upstream (Higher Pressure) Ball valves have 1/8” hole in ball Alternatively, ball valves have special self- relieving seats Valve Design for Internal Relief

24 Over-Pressurization 24 Gate Valve Notch cut in gate

25 Over-Pressurization 25 Faulty System Design  Equipment not designed for pressure or temperature extremes  Missing or isolated pressure relief devices  Relief devices that are too small

26 Over-Pressurization 26 Faulty System Design (cont’d)  Relief devices not set properly  Unanticipated modes of operation  Stressed piping, tubing, connectors  Relying solely on humans to control pressure

27 Over-Pressurization 27 Case Study: Faulty System Design  A gas heater vessel ruptured at a CO2 plant in 1998  A dryer switching valve failed in open position.  High pressure process gas (800 psig) then entered the lower-pressure regeneration gas system.  The regeneration gas heater safety relief valve was not big enough to handle process gas flow rates.  The heater vessel ruptured.

28 Over-Pressurization 28 Human Ignorance & Error  Filling a low pressure cylinder on a high pressure filling manifold  Replacing relief devices with devices of a different design or pressure setting  Replacing a section of pipe, a valve or other process component with one that has a lower pressure rating than the original

29 Over-Pressurization 29 Human Ignorance & Error(cont’d)  Compromising the integrity of a process component (dents, crimping, unchecked corrosion)  Not following established procedures

30 Over-Pressurization 30 Case Study: Human Ignorance & Error  Whipping hose during leak test:  Employee connected a 250 psig rated air hose to a high pressure nitrogen source.  He pressurized hose and manifold to 350 psig.  He discovered manifold leak, vented pressure and repaired leak.  Blow gun was attached to hose and employee claims that pressure was set to 200 psig.  Hose fitting failed, hose whipped and shredded a portion of employee’s coveralls.

31 Over-Pressurization 31 Protecting Ourselves  Knowledgeable Employees  Proper training  Properly Designed Processes  Equipment that is good for the pressure  Control system designs that consider all scenarios  Valves with internal relief capability (for liquefied gases)

32 Over-Pressurization 32 Protecting Ourselves (cont’d)  Pressure Relief Devices  Relief valves, rupture disks  Dual relief valves with diverter valves  Proper Operating Procedures  Proper Maintenance Procedures

33 Over-Pressurization 33 Proper Maintenance  Relief Valves Calibration  Bench tested and reset every 5 years  Relief devices missing their wire seal must be removed from service and tested  Recalibration must be by a qualified person  Malfunctioning Relief Devices  Plugged or restricted inlets or outlets  Rust and dirt or ice in spring mechanism

34 Over-Pressurization 34 Proper Maintenance (cont’d)  Process Controls and Sensing Devices Calibration  Gauges and thermometers  Metering devices  Solenoids  Temperature and pressure limit controls  Mercoids

35 Over-Pressurization 35 Proper Maintenance (cont’d)  Ensure Replacement Parts are “Replacement-In-Kind”  Pipe, fittings and components with same pressure rating  Valves with same pressure relief capabilities

36 Over-Pressurization 36 Management of Change  Follow established review procedures  Consider all modes of operations  For each process, ask “How can we have high pressure?”  Ensure proper pressure relief strategy for every process component

37 Over-Pressurization 37 High Pressure Valve Pressure Relief Device

38 Over-Pressurization 38 Portable Liquid Container Rupture Disk Pressure Relief Device

39 Over-Pressurization 39 Forklift Pressure Relief Device

40 Over-Pressurization 40 Dual Storage Tank Safety Valves Pressure Relief Device

41 Over-Pressurization 41 High Pressure Line Safety Pressure Relief Device

42 Over-Pressurization 42 Solenoid Shut-off Valve Pressure Relief Device

43 Over-Pressurization 43 Pressure / Temperature Switch Pressure Inlet to SensorTemperature Sensor

44 Over-Pressurization 44 Mercoid Switch

45 Over-Pressurization 45 High Pressure Shut-Off Switches Pressure Shut-off Switches

46 Over-Pressurization 46 Review Questions  Give examples of processes or pieces of equipment at your location which can present an over-pressurization hazard?  What are the causes of over-pressurization?  Liquefied gases can expand up to __________ times in volume from liquid to gas.

47 Over-Pressurization 47 Review Questions  Which is the most dangerous hazard, trapped liquid with or without vapour? Why?  What kinds of things can we do to protect from over-pressurization hazards?


Download ppt "Prevention of Over - Pressurization Training Package TP 05/05 1 Asia Industrial Gases Association 298 Tiong Bahru Road, #20-01 Central Plaza, Singapore."

Similar presentations


Ads by Google