Presentation is loading. Please wait.

Presentation is loading. Please wait.

Step-by-Step Tutorial NEXTA: Simulation Data Visualizer for Open-Source DTALite Engine NEXTA: Network EXplorer for Traffic Analysis This tutorial is prepared.

Similar presentations


Presentation on theme: "Step-by-Step Tutorial NEXTA: Simulation Data Visualizer for Open-Source DTALite Engine NEXTA: Network EXplorer for Traffic Analysis This tutorial is prepared."— Presentation transcript:

1 Step-by-Step Tutorial NEXTA: Simulation Data Visualizer for Open-Source DTALite Engine NEXTA: Network EXplorer for Traffic Analysis This tutorial is prepared by Dr. Xuesong Zhou and Mingxin Li at Univ. of Utah

2 2 Major Components of Software Package NEXTA (Network EXplorer for Traffic Analysis) is a graphical user interface to facilitate preparation, post-processing and analysis of simulation-based dynamic traffic assignment datasets. NEXTA is extended from DYNASMART-P Graphical Input Editor (DSPEd) 1.0, which was initially developed by ITT Industries, Inc. for the Federal Highway Administration (FHWA) in Dr. Xuesong Zhou has been maintaining and enhancing its capabilities since then. NEXTA is distributed as Freeware, and it is now also used as the visualization program for TRANSIMS, an open-source software package for transportation analysis and simulation. DTALite is a fast open-source dynamic traffic assignment engine, which aims to assist transportation planners to effectively utilize advanced dynamic traffic analysis tools with limited hardware and time resources. It uses a computationally simple but theoretically rigorous traffic queuing model in its lightweight mesoscopic simulation engine. DTALite is distributed as open-source software using the GNU General Public License (GPL). Its source code is available at DTALite is a fast open-source dynamic traffic assignment engine, which aims to assist transportation planners to effectively utilize advanced dynamic traffic analysis tools with limited hardware and time resources. It uses a computationally simple but theoretically rigorous traffic queuing model in its lightweight mesoscopic simulation engine. DTALite is distributed as open-source software using the GNU General Public License (GPL). Its source code is available at DTALite: Open-source Assignment/Simulation Engine NEXTA: GUI for Visualization and Data Preparation

3 Sample Data Set: Portland Network and Demand Data 3 # of Zones = 2,013 # of Nodes = 10,094 # of Links = 25,804 # of Vehicles = 1.1M for 4 hours # of Zones = 2,013 # of Nodes = 10,094 # of Links = 25,804 # of Vehicles = 1.1M for 4 hours Total computation time for 10 iterations: 4 hours Computation time per iteration: 24 min Total computation time for 10 iterations: 4 hours Computation time per iteration: 24 min Computer Settings: Intel Core 2 Duo CPU (2 processors) 2.26 GHz 4 GB of RAM Computer Settings: Intel Core 2 Duo CPU (2 processors) 2.26 GHz 4 GB of RAM

4 Sample Vehicle Plot 4

5 Sample MOE Display 5

6 Sample Link MOE Plot 6

7 Sample Vehicle-path Analysis Plot 7

8 8 Tutorial Outline Software installation Exercise 1: View simulation results Exercise 2: Running traffic simulation and understand output files Exercise 3: Prepare input data from Excel spreadsheet

9 Install NEXTA for DTALite (1) Step 1: Install NEXTA “C:\Program Files\NEXTA_for_DTALite” Step 2: Install Visual C redistribution package Go to folder C:\Program Files\NEXTA_for_DTALite \VisualC++_RedistributionPackage vcredist_x86.exe and click on “vcredist_x86.exe” to install. Step 3: Install “Data Access Object” redistribution package Go to C:\Program Files\ NEXTA_for_DTALite\ Setup.exe VisualC++_RedistributionPackage\DISK1, click on “Setup.exe” to install. 9

10 Install NEXTA for DTALite (2) 10 Remarks: 1)You need an Administrator account to install the NEXTA package. 2)Please save your DTALite data set to a “writable” folder (e.g. C:\DTALite\DataSets\”. Folder “Program Files” could be set to “read-only” by your Windows operating systems. 3)Please visit for the latest NEXTA for DTALite software release and additional data set. 4) The release data of your current NEXTA package can be found at menu -> Help -> About.

11 Details at Installation Folder 11 Graphical User Interface Dynamic Traffic Assignment Engine Datasets

12 Hardware and Software Requirements Hardware recommendations  Minimum memory of 512 MB.  Recommended options for large-scale network: 4GB of RAM  Remarks: An insufficient amount of RAM can cause your computer to continually read data from disk instead of physical memory, please ensure there is sufficient memory for very large networks. Operating system requirements  Windows 2000  Windows XP  Windows Vista (32 bit/64 bit)  Windows 7 12

13 Exercise 1: Visualization 13 What we will learn: Step 1: Import Data from Excel Spreadsheet Step 2: Save a project Step 3: Run Traffic Simulation/Assignment Step 4: Resize the Network Step 5: Double-Click a Link to Show Link Property Step 6: Display Capacity and Demand Attributes Step 7: Select Display Mode to View Simulation Results (Density, Speed, Queue and Volume) Step 8: Select Vehicle Display Mode Step 9: Show Simulation Results at a Given Time Period Step 10: Play Animation Step 11: Double-Click a Link to Show MOE Profile Step 12: Configure MOE Display Dialog Step 13: Multi-link Comparison Step 14: Network-level MOE Step 15: Vehicle-path Analysis Step 16: Find Paths in NEXTA Step 17: View Summary.log Step 19: Change Link Capacity Step 20: Save the changes Step 21: Re-run Simulation Step 22: Save to Another Folder Step 23: Re-load previous dataset Step 24: Compare Capacity Change Visually Step 25: Compare Network MOEs Step 26: Run Simulation: Check Network-level MOE Step 27: Check Link-level MOE Step 28: Locate Other MOE files Step 29: Read On-line Document Step 1: Import Data from Excel Spreadsheet Step 2: Save a project Step 3: Run Traffic Simulation/Assignment Step 4: Resize the Network Step 5: Double-Click a Link to Show Link Property Step 6: Display Capacity and Demand Attributes Step 7: Select Display Mode to View Simulation Results (Density, Speed, Queue and Volume) Step 8: Select Vehicle Display Mode Step 9: Show Simulation Results at a Given Time Period Step 10: Play Animation Step 11: Double-Click a Link to Show MOE Profile Step 12: Configure MOE Display Dialog Step 13: Multi-link Comparison Step 14: Network-level MOE Step 15: Vehicle-path Analysis Step 16: Find Paths in NEXTA Step 17: View Summary.log Step 19: Change Link Capacity Step 20: Save the changes Step 21: Re-run Simulation Step 22: Save to Another Folder Step 23: Re-load previous dataset Step 24: Compare Capacity Change Visually Step 25: Compare Network MOEs Step 26: Run Simulation: Check Network-level MOE Step 27: Check Link-level MOE Step 28: Locate Other MOE files Step 29: Read On-line Document

14 Step 1: Import Data from Excel Spreadsheet 14 Filename: SampleNetwork.xls Dataset folder: C:\Program Files\NEXTA_for_DTALite\DataSets The data structure of the spreadsheet will be explained in Exercise 3.

15 Step 2: Save a project 15 Suggested folder C:\DTALite\DataSets\Sample2

16 Step 3: Run Traffic Simulation/Assignment 16 Run Traffic Simulation/Assignment

17 Step 4: Tool bar -> Zoom In /Out, Resize the Network 17 View Tools Distance Move Network Pan Zoom In Zoom Out Show Entire Network Show/Hide Grid Show/Hide Node Show/Hide Zone

18 Step 5: Double-Click a Link to Show Link Property 18

19 Step 6: Display Capacity and Demand Attributes 19 Display link capacity Display OD volume

20 Step 7: Select Display Mode to View Simulation Results (Density, Speed, Queue and Volume) 20

21 Step 8: Select Vehicle Display Mode 21

22 Step 9: Show Simulation Results at a Given Time Period 22 current time stamp First number is current time stamp simulation horizon Second number is simulation horizon Clock Bar Slider

23 23 Step 10: Play Animation Rewind, play, pause, stop Remarks: Simulation clock is advanced in 1-min interval

24 24 Step 11: Double-Click a Link to Show MOE Profile Time axis (unit: min) Green line indicates the current simulation time Upstream node -> Downstream node (# link ID)

25 25 Step 12: Configure MOE Display Dialog Select MOE: Density, Speed, Queue Length, Volume Start Time, End Time, Max Y Change Background colorExport data to Excel

26 26 Step 13: Multi-link Comparison Select multiple links (by using Ctrl+ mouse click) to display MOE time profiles simultaneously for multiple selected links, in the same or different projects.

27 Step 14: Display Network-level MOE 27

28 Step 15: Vehicle-path Analysis 28 OD to paths Paths to vehicles Vehicles –to list of links Select a path from path list to highlight the path on the background network

29 Step 16: Find Paths in NEXTA 29 Define Origin Define Destination Find Paths

30 Step 17: View Summary.log 30

31 Step 18: Change Link Capacity 31 Change capacity from 900 into 800

32 Step 19: Change Demand 32 Increase overall demand levelChange demand of individual OD pairs Change Overall Multiplication Factor from 1.0 into 1.5 Change OD demand (1  4) from 5000 into 6000

33 Step 20: Save the changes 33

34 Step 21: Save to Another Folder 34 C:\DataSets\Sample\After_Increase_Demand\After_Increase_De mand.dlp

35 Step 22: Re-run Simulation 35

36 Step 23:Re-load Previous Dataset 36 previous dataset Window  Tile Vertically

37 Step 24: Compare Capacity Change Visually 37

38 Step 25: Compare Network MOEs 38

39 Step 26: Run Simulation: Network-level MOE 39

40 Step 27: Run Simulation: Link-level MOE 40

41 Step 28: Locate Other MOE files 41

42 Step 29: Read On-line Document 42

43 Advanced Topic 1: Scenario Configuration Locate major output files 43

44 Step 1: Configuring DTASettings.ini 44 Global multiplication factor will multiply each OD pair by that factor.

45 Running Simulation: Illustration of Demand Loading/Simulation Horizon, Departure Time Interval 45

46 Step 2: View AssignmentMOE.csv 46 1.Iteration 2.Time stamp in minute 3.Cumulative in-flow count 4.Cumulative out-flow count 5.Number of vehicles in the network 6.Flow in a minute 7.Average trip-time in minute

47 Step 3: LinkMOE.csv 47 1.Iteration 2.From-node ID 3.To-node ID 4.Timestamp in minute 5.Travel time in minute 6.Delay in minute 7.Link volume in vehicle 8.Link volume in vehicle/hour/lane (vehphpl) 9.Density in vehicle/mile/lane 10.Speed in mph 11.Exit queue length 12.Cumulative arrival count 13.Cumulative departure count

48 Step 4: Vehicle.csv 48 1.Iteration 2.Vehicle ID 3.Origin zone ID 4.Destination zone ID 5.Departure time 6.Arrival time 7.Complete flag 8.Trip time 9.Vehicle type 10.Occupancy 11.Information type 12.Value of time 13.Minimum path cost 14.Distance in mile 15.Number of nodes 16.Node id 17.Node arrival time

49 Advanced Topic: Import and Change Time-dependent Demand 49 Sample time-of-day demand profile

50 Running Simulation: Change OD Demand Distribution 50


Download ppt "Step-by-Step Tutorial NEXTA: Simulation Data Visualizer for Open-Source DTALite Engine NEXTA: Network EXplorer for Traffic Analysis This tutorial is prepared."

Similar presentations


Ads by Google