Presentation is loading. Please wait.

Presentation is loading. Please wait.

March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 1 Supported by GSI & CERN Existing.

Similar presentations


Presentation on theme: "March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 1 Supported by GSI & CERN Existing."— Presentation transcript:

1 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 1 Supported by GSI & CERN Existing bunch-to-bucket transfer schemes Synchronisation solutions for accelerator facilities Introduction Machine synchronisation Energy matching Batch synchronisation Fine synchronisation Limitations Beam synchronous transfer timing Applications Booster – PS and LEIR – PS PS – SPS SPS – LHC Remaining issues

2 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 2 Supported by GSI & CERN Plan Introduction Machine synchronisation Energy matching Batch synchronisation Fine synchronisation Limitations Beam synchronous transfer timing Applications Booster – PS and LEIR – PS PS – SPS SPS – LHC Remaining issues

3 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 3 Supported by GSI & CERN Introduction – Bunch-to-bucket transfer Bunch-to-bucket transfers are being considered since particles are being accelerated over several machines successively. « Bunch-to-bucket » means that a bunch of particle must be deflected from its stable trajectory in a source machine to be injected in the centre of a bucket on its stable trajectory in a target machine. Source-synchrotron Target-synchrotron Ejection septum Injection septum Figure : Problem overview

4 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 4 Supported by GSI & CERN Introduction – Synchronisation Extraction Injection Acceleration in the source-synchrotron Acceleration in the target-synchrotron Energy Time Figure : acceleration cycle, overview Injection Acceleration ramp Ejection Energy matching Phase matching Loop correction Energy Time Figure : acceleration cycle, the source-machine Extraction energy

5 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 5 Supported by GSI & CERN Introduction – Bucket, Bunch, Batch An empty bucket A bunch in its bucket 4 equally spaced bunches 2 batches of 4 bunches each Batch spacing Bunch spacing

6 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 6 Supported by GSI & CERN Plan Introduction Machine synchronisation Energy matching Batch synchronisation Fine synchronisation Limitations Beam synchronous transfer timing Applications Booster – PS and LEIR – PS PS – SPS SPS – LHC Remaining issues

7 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 7 Supported by GSI & CERN Energy matching Goal of this stage is to ensure that the bunches, which would be sent form the source- machine and the buckets in the target-machine are derived from the same energy level. Synchrotrons circumference Revolution Frequency RF Frequency Harmonic number

8 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 8 Supported by GSI & CERN Batch synchronization (1) Figure : phase advance Phase reference Figure : phase advance Phase reference

9 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 9 Supported by GSI & CERN Batch synchronization (2) A frequency bump is produced to correct the phase advance: Figure : frequency bump Bump start Source-synchrotron Target-synchrotron Extraction Transfer Injection

10 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 10 Supported by GSI & CERN Fine synchronization V This loop can be a simple phase locked loop or a more sophisticated 1 st or 2 nd order correction function (PSB and LHC case).

11 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 11 Supported by GSI & CERN Plan Introduction Machine synchronisation Energy matching Batch synchronisation Fine synchronisation Limitations Beam synchronous transfer timing Applications Booster – PS and LEIR – PS PS – SPS SPS – LHC Remaining issues

12 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 12 Supported by GSI & CERN Limitations Radial excursion: a frequency offset at constant B field results in a radial excursion which cant be fully handled during the transfer. Limitation on the frequency rate: the instant speed and the momentum of the synchronous particle are linked.

13 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 13 Supported by GSI & CERN Limitations: Adiabaticity The evolution is adiabatic if the relative variation of the synchrotron frequency in one synchrotron period is small : V This conditions sets also some limits to the shape change ratio of the bucket :

14 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 14 Supported by GSI & CERN Plan Introduction Machine synchronisation Energy matching Batch synchronisation Fine synchronisation Limitations Beam synchronous transfer timing Applications Booster – PS and LEIR – PS PS – SPS SPS – LHC Remaining issues

15 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 15 Supported by GSI & CERN Signal synchronisation Re-synchronisation: one machine should synchronise on the second one or both machines must synchronise on an external clock. In both case the reference signal must be re-synchronised. Possibility to wait for a confirmation signal after both machines are perfectly synchronised and phased. The master machine or the master timing sends the extraction pre-pulse. The different extraction, injection and instrumentation pulses are timed, taking into account the different hardware delays (kickers, pick-ups…) Control Target machine Source machine Shared timing

16 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 16 Supported by GSI & CERN Plan Introduction Machine synchronisation Energy matching Batch synchronisation Fine synchronisation Limitations Beam synchronous transfer timing Applications Booster – PS and LEIR – PS PS – SPS SPS – LHC Remaining issues

17 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 17 Supported by GSI & CERN Booster – PS and LEIR – PS In both cases the PS imposes a relative narrow RF-frequency range which is suitable for the transfer. The source-machine must tune its revolution frequency on the PS revolution frequency (with respect of the harmonic number). Transfer PSB – PS protons:

18 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 18 Supported by GSI & CERN LEIR – PS rephasing Figure: Measured synchronisation phase for different correctors. Plot (a): second-order PD2 only. Plot (b): third order corrector PID2 obtained by cascading a first-order PI and a second-order PD correctors. Data are acquired every 37.5 μs. PSB Tests 2008, M.E. Angoletta

19 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 19 Supported by GSI & CERN PS – SPS (1) Transfer for protons : Transfer for Pb ions: MHz at 26 GeV MHz at 5.1 GeV/u 100 or 200 ns bunch spacing MHz at 14 GeV

20 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 20 Supported by GSI & CERN PS – SPS (2) PEX.W10 PEX.SSYNC PEX.SSYNC2 PEX.MW8RF TFID TREV TRF

21 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 21 Supported by GSI & CERN PS – SPS (3) Pre-pulse PS Warning PS Kicker PS Kicker SPS Master timing PEX.W10 Sync Sync2 PEX.WSPS

22 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 22 Supported by GSI & CERN PS – SPS rephasing Figure: PS-SPS synchronisation (phase advance in yellow) Heiko Damerau Extraction

23 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 23 Supported by GSI & CERN SPS – LHC (1) Transfer for protons : Bunch compressed to 1.2 ns 358 bunches with 200 ns bunch spacing

24 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 24 Supported by GSI & CERN SPS – LHC (2) Pre-pulse SPS Extraction SPS Injection LHC BT Injection LHC BI ~90 ms ~990 ms SEX.F-W20 17 ms

25 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 25 Supported by GSI & CERN SPS – LHC rephasing Phase advance Figure: SPS-LHC synchronisation Thomas Bohl LHC SPS

26 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 26 Supported by GSI & CERN Plan Introduction Machine synchronisation Energy matching Batch synchronisation Fine synchronisation Limitations Beam synchronous transfer timing Applications Booster – PS and LEIR – PS PS – SPS SPS – LHC Remaining issues

27 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 27 Supported by GSI & CERN Remaining issues Each synchronization scheme is designed to fit in the machine and energy requirements according to the type of the accelerated particles. Since the batch matching starts only after acceleration, significant time is lost during this procedure on the flat top. Some schemes are being considered to start the synchronization during acceleration. Synchronising more than two machines according to eventually different reference frequencies can be challenging

28 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 28 Supported by GSI & CERN Acknowledgement Thank you for your attention This short study has been led over four quite intensive weeks at CERN. Many aspects of the bunch-to-bucket transfer however remain to be discussed and investigated before a reliable time-efficient scheme might be plotted. For their helpful pieces of advise and their kindness I want to thank : Maria Elena Angoletta, Philippe Baudrenghien, Thomas Bohl, Elena Chapochnikova Heiko Damerau, Harald Klingbeil, To be continued…

29 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 29 Supported by GSI & CERN Sources DSP Software Implementation, Dr. H. Klingbeil, GSI documentation, Version 41, Modellierung des Regelungs- und Steuerungssystems einer Beschleunigungseinheit für Synchrotrons, U. Hartel, TU-Darmstadt, Diplomarbeit, Main Technical Parameters of SIS100, N. Pika, GSI, The white rabbit project, J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedi\v{c}, R. Bär, T. Fleck, M. Kreider, C. Prados, S. Rauch, CERN, Cosylab, GSI, Entwurf und Implementierung eines digitalen Phasen- und Amplitudendetektors für eine HF-Beschleunigerkaviät, Tobias Wollmann, TU- Darmstadt, Diplomarbeit, Time Optimal Synchronisation Procedure and Design of Associated Feedback Loops, F. Pedersen, M.E. Angoletta, CERN, Rephasing SPS-LHC, P. Baudrenghien, A. Butterworth, F. Dubouchet, A. Pashnin, J. Noirjean, R. Olsen, CERN, Rephasing, P. Baudrenghien, CERN, Synthesizer Controlled Beam Transfer from the AGS to RHIC, J. DeLong, J. M. Brennan, W. Fischer, T. Hayes, K. Smith, S. Valentino, Brookhaven National Laboratory, Upton N.Y , Vorschlag eines Beschleunigungsschemas für die Maschinen SIS12/18 und SIS100 bei GSI, H. Damerau, M. Emmerling, P. Hülsmann, GSI, A Straightforward Procedure to Achieve Energy Matching Between PSB and PS, M. Benedikt, H. Damerau, S. Hancock, CERN, Beam Control for Protons and Ions, P. Baudrenghien, CERN, SPS Beams for LHC: RF Beam Control to Minimize Rephasing in the SPS, P. Baudrenghien, T. Linnecar, D. Stellfeld, U. Wehrle, CERN, Proposal to Transfer 8 SPS Bunches into 8 LEP Buckets, P. Baudrenghien, E. Brouzet, D. Boussard, T. Linnecar, CERN, Synchronisation RF CPS-SPS-LEP. Méthode et Contrôle dans le SPS, P. Baudrenghien, C. Despas, CERN, Matching the Energies of the CPS and SPS Machines R.J. Lauckner, CERN, SIS Parameter List, B. Franczak, GSI, 1987.

30 March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 30 Supported by GSI & CERN Existing bunch-to-bucket transfer schemes Synchronisation solutions for accelerator facilities


Download ppt "March 20 th 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Thibault Ferrand, MSc | 1 Supported by GSI & CERN Existing."

Similar presentations


Ads by Google