Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr. 2008 Launch Vehicles Propulsion Technologies Max CALABRO.

Similar presentations


Presentation on theme: "1 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr. 2008 Launch Vehicles Propulsion Technologies Max CALABRO."— Presentation transcript:

1 1 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Launch Vehicles Propulsion Technologies Max CALABRO

2 2 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr BIBLIOGRAPHIE Conception des véhicules spatiaux Daniel MARTY – MASSON Space Propulsion Analysis and Design :Ronald W.Humble Mc Graw Hill Book Company Technologie des propergols solides Alain DAVENAS - MASSON· Handbook of Astronautical Engineering Mc Graw Hill Book Company Rocket Propulsion Elements George SUTTON - John Wiley & Sons NASA SP nakka.rocketry.net

3 3 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr MISSIONS

4 4 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Satellisation et Orbites

5 5 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Satellisation:2 conditions Altitude et Vitesse Mouvement d'un corps par rapport à la terre (hypothèses képlériennes) système isolé : terre + satellite mouvement à force centrale (Kepler) ; gravité terrestre ramenée en 1 point masse du corps << masse de la Terre Exemple, orbite circulaire daltitude 200 km (rayon 6578 km) V = 7800 m/s k.M = = m 3 /s² Satellisation et Orbites

6 6 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Notations classiquement utilisées p : paramètre de l'orbite e : excentricité de l'orbite une orbite est une conique Quelques exemples –Mars Sample Returnhyperbole (au départ de la Terre) –Trajectoire vers la lune parabole –Missions commerciales classiqueellipses (ou cercles ) E = 0 :parabole E < 0 :orbites captives E > 0 :orbites de libération e = 0 :orbite circulaire e < 1 :orbite elliptique e = 1 :orbite parabolique e > 1 :orbite hyperbolique Satellisation et Orbites

7 7 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Principe de satellisation et définition des orbites Illustration (4)

8 8 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr X P.V. Z N : nœud ascendant Satellite Périgée Y O N' N i r Sens du mouvement Plan équatorial du corps attractif Plan d'orbite Apogée i Trace au sol de l'orbite Paramètres de description du mouvement –cartésiens :X, Y, Z, Vx, Vy, Vz –orbitaux : a, e, i,,, –définition des différentes anomalies Satellisation et Orbites

9 9 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Paramètres en gras : valeurs définissant la mission satellite, les autres paramètres peuvent être optimisés Satellisation et Orbites

10 10 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Définition des orbites classiques GTO MEO LEO GTO+ Super GTO GEO SubGTO

11 11 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Un lanceur cest… le moyen d'acquérir la vitesse importante, bien orientée, à une bonne altitude ( V à étaler dans le temps) un engin fonctionnant dans le vide : pas de contact, pas d'utilisation de forces atmosphériques utilisation de la propulsion par réaction

12 12 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr La propulsion Fusée chambre de combustion Force de poussée Éjection des gaz Divergent tuyère Poussée instantanée = Fp = q. Ve = q. g0. Isp q : débit massique, Ve = g0. Isp : vitesse d'éjection des gaz Correction liée à latmosphère

13 13 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr. 2008

14 14 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Phases de vol : Sortie du pas de tir : trajectoire verticale Basculement en tangage / lacet / roulis Vol à incidence nulle : poussée dans la direction de la vitesse (« gravity turn » : le lanceur « tourne » sous leffet du poids) VOL ATMOSPHÉRIQUE Objectifs : -Ne pas toucher les installations. -Orienter de façon optimale le lanceur sous contrainte de dimensionnement* -Minimiser les efforts transverses sur le lanceur (dus à la pression dynamique) jusquà la sortie de latmosphère altitude portée Tangage verticale = 0° temps Phase transitoire pour atteindre incidence nulle

15 15 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Phases de vol : Ré-orientation optimale (« Dog-leg ») Guidage optimal jusquà arrivée sur lorbite finale visée VOL HORS ATMOSPHÉRE Objectifs : -Le vol atmosphérique à incidence nulle était non optimal, il faut donc ré orienter le lanceur dans la bonne direction. -Orienter de façon optimale le lanceur à chaque instant sous contrainte (flux, retombée détage, visibilité, etc.) Vol atmosphérique 2. injection altitude portée Tangage verticale = 0° temps Contrainte et largage dun étage Vol atm.

16 16 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Principes de bases Altitude Temps Sortir rapidement de l'atmosphère fortes poussées pour minimiser les pertes par trainée et par gravité Transformer énergie potentielle en énergie cinétique Acquérir le plus d'énergie cinétique possible avec ergols à forte Isp

17 17 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PROPULSION LAUNCH VEHICLE MISSION REQUIREMENTS Bring a payload on a given orbit = deliver an increment velocity Due to technological/cost constraints a LV is a multistage That implies to be able to orient the thrust vector (to optimize the angle of attack versus time) Thrust versus time have to be optimized under constraints to respect maximum values of dynamic pressure, acceleration, dynamic pressure at stage ½ separation,…. LV design have to take into account constraints issued from the propulsion choices

18 18 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr F ß M.g RnRn RaRa Horizontal CoG

19 19 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Mouvement du centre de gravité : trajectoire du lanceur Equations des forces : Projection sur axes lanceur X et Y par intégration, donne la vitesse et la position du lanceur (trajectoire plane)

20 20 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Formule de Tsiokolsky DV Propulsif V p f i propulsivep i dt m F f

21 21 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Influence de la base de lancement (vitesse initiale) vitesse entraînement Inclinaison optimale = latitude pas de tir Ve (m/s) Azimut 900 Kourou Latitude 5° KSC Latitude 28° Baikonour Latitude 45°

22 22 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Intérêt des phases balistiques et rallumages But : obtention d'altitudes élevées Altitude maximale possible : En tir à poussée continue, impossibilité d'atteindre des orbites à haut périgée. Il faut augmenter artificiellement le « temps de combustion » du lanceur La phase balistique permet d'augmenter ce « temps » (avec ou sans rallumage ) Manoeuvre GTO + GTO Périgée élevé Manoeuvre MEO MTO Altitude élevée phase balistique = pseudo-étage H(km)

23 23 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Intérêt des phases balistiques et rallumages VEGA 3rd Methane stage

24 24 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr LV Missions Deliver a V Propulsion V T =V f - V i +Losses V f Payload velocity V i Initial velocity at Launch site = 463,3cosL sin (m/s) Losses : effects of angle of attack,de gravity,drag and Lift 1nmi=1,85325 km Losses(V f =8km/s) Attack Angle800 m/s Lift 1 m/s Drag120 m/s Gravity830 m/s 1500 Losses 1800m/s Low Altitude Injection REPARTITION EXAMPLE

25 25 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr DV lanceurs GTO

26 26 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Generalities: LV Missions ORDER OF MAGNITUDE OF THE LOSSES Losses depend on:: LV configuration Trajectory Strategy to go into orbit ARIANE 5 G - GTO Mission (600 km injection)

27 27 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr n° StageDV Propulsion DragGravityThrust Orientation Sum MpMiAsTcIsv / P400 H40 GTO Transfer PERTES 23%

28 28 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr n° Stage DV PropDragGravityThrust Orientat ion Sum MpMiAsTcIsv VEGA circ polar 700km PERTES 32%

29 29 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr WHY A MULTISTAGE

30 30 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Principe d'étagement Influence du nombre d'étages

31 31 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PAYLOAD AS A PERCENTAGE OF INITIAL LAUNCHER MASS ALL SOLID STAGES ISV=265 S TECHNOLOGY/PROPELLANT OPTIMIZATION

32 32 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PAYLOAD AS A PERCENTAGE OF INITIAL LAUNCHER MASS ALL CRYOGENIC STAGES ISV=460S DV = go Is Log (Mi/Mf) Tsiokolvsky equation TECHNOLOGY/PROPELLANT OPTIMIZATION

33 33 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PAYLOAD AS A PERCENTAGE OF INITIAL LAUNCHER MASS

34 34 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PAYLOAD AS A PERCENTAGE OF INITIAL LAUNCHER MASS CAUTION: THESE COMPARISONS ARE TRICKY ! qTHE LAUNCH SITES (AND CONSTRAINTS) ARE DIFFERENT qTHE GTO ARE DIFFERENT: NOT THE SAME INCLINATION ATLAS 551/ARIANE 5 EPS COMPARISON LAUNCHED BOTH FROM KOUROU GTO 7° PAYLOAD ARIANE 5 EPS = % ATLAS 551= 1.627% THE ATLAS ARCHITECTURE IS 1.72 MUCH MORE EFFICIENT ATLAS 551/ARIANE 5 ECB COMPARISON ARIANE 5 ECB = 1.5 % AT THE ORIGIN, ARIANE 5 WAS OPTIMISED FOR LEO AND HERMES

35 35 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PAYLOAD AS A PERCENTAGE OF INITIAL LAUNCHER MASS CAUTION: THESE COMPARISONS ARE TRICKY ! qTHE LAUNCH SITES (AND CONSTRAINTS) ARE DIFFERENT qTHE GTO ARE DIFFERENT: NOT THE SAME INCLINATION ATLAS 551 LAUNCH SITE INFLUENCE : FOR ATLAS 551, A 700kg INCREASE OF GEO PAYLOAD COULD BE EXPECTED FROM A KOUROU LAUNCH (Ref: 8670kg into GTO) LAUNCH SITE INFLUENCE CAN BE VERY IMPORTANT DEPENDING ON LAUNCHER AND ON ITS ARCHITECTURE

36 36 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr THRUST VERSUS TIME

37 37 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr THRUST AT LIFT-OFF

38 38 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr THRUST AT LIFT-OFF The thrust level at lift-off result of a global optimization of the launch vehicle and of the mastered technologies: oAn intrinsic optimization of the thrust law shape would lead to exit of the atmosphere as fast as possible (taking into account the constraints) oClassical solutions are to add-on boosters to liquid launch vehicle or to tailored the thrust law shape of solid first stages

39 39 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PROPULSION TECHNOLOGIES SOLID PROPELLANTS: (Composite Propellant-Safety class 1.3) STORABLE LIQUIDS (at ambient temperature) Type: N2O4 + UDMH Quasi equivalent to Solids PARTLY STORABLE: Type: Kerosene + LOxygen Specific Impulse 25 % higher than Storable CRYOGENIC: LOxygen and LHydrogen Specific Impulse 50 % higher than Storable

40 40 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr SPECIFIC IMPULSE COMPARISON

41 41 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PROPULSION TECHNOLOGIES Propellant Storage Pressure Increase Propellant Storage and Combustion SOLID & LIQUID PROPULSION

42 42 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PROPULSION TECHNOLOGIES SOLID ROCKET MOTOR

43 43 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PROPULSION TECHNOLOGIES LIQUID STAGE

44 44 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PROPELLANT CHOICE

45 45 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PROPELLANT CHOICE

46 46 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr LIQUID MOTOR CYCLES GAS GENERATOREXPANDER STAGED COMBUSTION

47 47 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Is sea level= Is vacuum – (Pa/Pc)..(1/Cd.g 0 ) For a first stage, for a given tc, interest to increase Pc: Is sea level and Is vacuum are closer; Is mean along trajectory higher For a given De, is greater For Liquid propulsion, FSCC allows high pressures For solid Propulsion: higher the strength of the structure material is, higher the optimal pressure will be = interest of carbon fibers winding But they are Limitations resulting of –Propellant burning rate –Throat erosion –Components feasibility

48 48 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr LIQUID ENGINE PARAMETERS CHOICE First Stage : Thrust,Operating time, As/At result of an optimisation at system level taking into account engine constraints Rule: maximize Isp along trajectory Interest for staged combustion Need of a high thrust at lift-off= Throttle able engines Upper stage : Maximum Isv, minimum mass for a given length Interest for Expander with EECC Have to be compliant with cost Target

49 49 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr LIQUID ENGINE COMPARISON:1st STAGE ENGINES

50 50 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ENGINE THRUST/NOZZLE VERY HIGH THRUST AT LIFT-OFF: SOLIDS OR SC LIQUID ENGINES

51 51 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr HYDROGEN UPPER STAGE ENGINES

52 52 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr STAGING and PROPULSION OPTIMIZATION

53 53 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr STAGING and PROPULSION OPTIMIZATION Optimization may concern : oMaximization of the performances: minimum GLOW for a given payload or max payload for a given GLOW oMinimization of costs: recurring, development, investments W or w/o constraints i.e. from existing investments can results size limitations, improve an existing stage is different than a brand new

54 54 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr STAGING and PROPULSION OPTIMIZATION On military motors volume constraints led to develop Submerged nozzles: Maximum loaded total impulse in a given volume HISTORY AND PREVIOUS EXPERIENCE CAN BE A CONSTRAINT

55 55 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr A VERY USEFUL METHOD FOR ESTIMATE Use of Tsiokolsky equation and of SoA Structural Mass Indexes DV = go Is Log (Mi/Mf) Knowledge of V to deliver (including gravity and drag ) Knowledge of Equivalent Specific Impulse (Roughly Isv- 1/3[Isv-Iss] ) for a first stage Is sea level = Is vacuum - Compute lift-off mass versus Specific Impulse

56 56 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Structural Mass Index: Modern & SoA Technologies

57 57 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr CHARACTERISTICS OF SOME SRM

58 58 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr CHARACTERISTICS OF SOME SRM Diameter 3 m De 2.08m Add 15/20% to obtain a FS mass Diameter 1.9 m De 1.48m Add 20/25% to obtain a SS mass

59 59 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr CHARACTERISTICS OF SOME SRM

60 60 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr MarcelPouliquen data CRYOGENIC OTHERS

61 61 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Structural Mass Index: Modern & SoA Technologies

62 62 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Pour les étages à ergols stockables avec turbo-pompes : k = Mp Lanceur EtageMpk Tsyklon3346,67% CZ-1212,221,72% Titan 2G228,4410,06% Ariane 4234,69,83% CZ ,00% PSLV237,514,13% Ariane ,64% Proton346,68,98% Proton21567,50% Ariane ,74% Proton14207,38% Pour les étages à ergols stockables avec turbo-pompes : k = Mp Lanceur EtageMpk Ariane 529,712,37% Delta2615,50% Soyouz- Fregat 35,420,37% PSLV4246,00% Cette formule est valable pour les étages entre 0.5 et 10 tonnes Cette formule est valable pour les étages entre 5 et 500 tonnes

63 63 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Pour les étages à ergols semi-cryotechniques : k = Mp Lanceur EtageMpk 214,9420,08% Zenit 2280,610,30% Soyouz BlocKA 194,57,20% Atlas11827,53% Zenit 21318,88,81% Cette formule est valable pour les étages entre 20 et 500 tonnes Pour les étages à ergols cryotechniques : k = Mp Lanceur EtageMpk CZ-338,523,53% H2216,717,96% Proton41917,89% Centaur32313,04% H2186,213,81% Ariane 51156,28,07% Energia17038,39% Cette formule est valable pour les étages entre 5 et 500 tonnes.

64 64 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr MoteurType EtageErgolsPoussée (kN) Isv (s)Masse (kg) LE5ESLOX/LH LE5AESLOX/LH RL10A3ESLOX/LH RL10A4ESLOX/LH HM7BESLOX/LH MKIIPELOX/LH MA5PELOX/RP RD170PELOX/RP SSMEPELOX/LH LE7PELOX/LH AESTUSESMMH/N 2 O VIKING5PEUH25/N 2 O 4 761x VIKING 4ESUH25/N 2 O

65 65 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr USE OF TSIOKOLSKY EQUATION

66 66 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr INTEREST OF NEW TECHNOLOGIES: Method of Comparison with SoA Choice of Solid Criteria :performance,economy, availability

67 67 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr INTEREST OF NEW TECHNOLOGIES: Method of Comparison with SoA Solid or Lox/RP questionable : cost, availability

68 68 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Launch Vehicle Performance result of an Optimisation of Propulsion and Overall LV Architecture: Performance can be Payload into Orbit or Costs

69 69 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr DESIGN OF THE THRUST LAW SHAPE PROPULSION POINT OF VIEW Solid motors have a limited combustion time depending on SRM diameter: 2 minutes max for 3 meters high thrust level is easy to realise Liquid engines are expensive trend to limit number, thrust level and complexity SYSTEM POINT OF VIEW Need of a high thrust level on the first part of the trajectory to optimise the performance Need to limit number of stages /boosters Acceleration can be decreased when the altitude increases Constraints on Launcher and Payload have to be taken into account

70 70 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr DESIGN OF THE THRUST LAW SHAPE TECHNICAL SOLUTIONS Jettisonable Engine Bay (First Atlas) Central Core with constant Thrust AND Add-on solid Boosters Liquid Engine with Throttling Capabilities More Stages- Constant Thrust (Stage separation ? Cost?)

71 71 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr DESIGN OF THE THRUST LAW SHAPE Thrust-to-Mass Ratio

72 72 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Coupled Optimization Launch Vehicle Design needs a multidisciplinary approach where Optimized Propulsion is a key point. So, special computer codes have to be developed and coupled. After the methodology description, 2 examples will be presented and discussed. OPTIMIZED LAUNCHER ARCHITECTURE AND PROPULSION = COST EFFECTIVE LAUNCHERS

73 73 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr MAXTOM &PROPSOL coupling LV global optimization need to couple 2 codes: one dedicated to the LV trajectography under constraints one dedicated to propulsion model This last one have to be very short in computation time and to give the good trends

74 74 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Trajectory and & Propulsion model coupling Constraints Orbital Parameters Data Optimised STAGE Catalog (Mp,,Tcu) Propulsion Model Trajectory code If Solid: Internal Ballistic Analysis Staging and For each Stages: Derivatives Thrust Law Burning time Gimballing angle Grain Shape Mass Low Rate laws(several)

75 75 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Example of Derivatives

76 76 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Example of Derivatives As Structures: payload kg/kg Isv: payload kg/s Combustion time:payload kg/s Exit Area:payload kg/m 2 Mass flow rate:payload kg/kg/s

77 77 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Number of stages Optimal Characteristics Mpi Tcui ßmax Trajectory Code Thrust Law Shape(by segment) Constraints Trajectory Inputs: aero coeff. Atmospheric model Mission Data SRM Catalog: type of stage Mp Tcu ßmax STAGING OPTIMISATION

78 78 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr. 2008

79 79 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr TRAJECTORY/VEHICLE OPTIMIZATION oOPTIMIZER Parametric optimization: gradient method oSIMULATOR ( 3 degrees of freedom equations Runge-Kutta point mass model earth rotation/oblateness: standard atmosphere atmosphere drag and lift oINPUTS geometrical data SRMs data aerodynamic coefficients

80 80 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr TRAJECTORY/VEHICLE OPTIMIZATION (MAXTOM) CONSTRAINTS Main topics : trajectory definition visibility from ground stations, stages fall-out locations LV limits on dynamic pressure, thermal flux, dynamic pressure at first stage separation, max, etc. OPTIMIZING THE PROPULSION CHARACTERISTICS IMPLIES : (1)for the disengagement of the launcher al lift-off, non-collision implies in general a constraint on the acceleration and so on the thrust level/total mass ratio al lift-off, (2)(2) propulsive characteristics impact on controllability. (3) general loads: LV mass variation have to be modeled

81 81 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Initial set Simulator End yes no Function and Constraints computation Maximum Achieved New Choice of parameters Optimizer

82 82 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PROPULSION MODELS

83 83 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr EXAMPLE OF SRM SIZING APPROACH CASE COMPOSITE :Filament winding direct computation Polar bosses interpolation in a database(finite elements results) METALLIC direct computation with SotA correction factors INTERNAL PROTECTION: Typical grains+Typical insulation materials= database thicknesses versus exposure times GRAIN Typical grains + Typical propellants Pm/MEOP+ Inner bore diameter inite elements results on mechanical grain behavior) PROPELLANTS Typical propellants database NOZZLE Flexseal: direct computation+ semi-empirical corrections Thermal insulation:database (thermal + mechanical sizing) Fixed housing :direct computation

84 84 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr GLOSSARY BSRM : Ballistic Solid Rocket Motor, : Gimballing angle, CCM : Chemical Combustion Modeler, DM : Design Mode, EM : Evaluation Mode, GMS : Grain Mechanical Sizing, IE : Interface, P : pressure, SRM : Solid Rocket Motor, TbC : To be Confirm, TI : Thermal Insulation, TSRM : Tactical Solid Rocket Motor, TVC : Thrust Vector Control. SRM DESIGN GMS CCM TSRM BSRM ? DM EM ? DESIGN DATAFULL DATA PROPSOLB INPUT FILE GENERATION RUN PROPSOLB DM OPTIMIZATION ? YES GRAIN/TI SIZING LOOP? STEP BY STEP OR GLOBAL ? PARAMETERS L, P,,... PROPSOLB OUTPUT FILES Mass Budget Functioning Characteristics Dimensions & Shapes GRAPHIC VIEW? RUN PV-WAVE SRM 2D DRAWING CAD VIEW? RUN CATIA-IE SRM 3D MODEL DATABASE END 12 RETURN EMDM BSRM YES NO YES STEP BY STEP GLOBAL TVC See CCM/GMS/TVC Operating Mode

85 85 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Example of Nozzles

86 86 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Large SRM: automatic 3D drawing output

87 87 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr GRAIN: Internal Ballistic Computation

88 88 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr oNOZZLE SHAPE Method of characteristics generation m,, 2D (needed for shape optimization) oSPECIFIC IMPULSE Isv= Isv ODE x t t = 2D + a m + b ln( m ) + c T al + d T al.ln( t ) + e Semi-empirical method validated on more than 250 firing tests including scale 1 and special subscale tests (dedicated to model validation) Simplified formulas are available from open literature (Landsbaum and Salinas,…) Note: for a SRM out of SotA: use of a conventional method based on independent losses SPECIFIC IMPULSE PREDICTION

89 89 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr SPECIFIC IMPULSE PREDICTION m s i = i- s t

90 90 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Nozzle Aerodynamic Losses For a given m and Ru/Rc

91 91 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr SPECIFIC IMPULSE PREDICTION SRM number

92 92 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Throat erosion Experimental Data Base: k 1 throat material type of substrate k 2 propellant erosivity p m average test pressure d throat material density t cu combustion time col throat diameter

93 93 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr SRMs Optimization For each new Launcher the SRMs main intrinsic operating parameters have to be optimized ( Pc, Le, N, ….) Some typical results: Propellant composition: PBHT type# 88%,18%aluminum for LV Nozzle angles: 1st stage #17°,upper stage # 19-21°, maximum with margin wrt alumina impact

94 94 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Second Stage: % of payload vs nozzle length Nozzle Length(m) Isv, Interstage and Nozzle masses have to be taken into account.

95 95 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Second Stage: % of payload vs nozzle angle

96 96 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Large SRM: automatic 3D drawing output

97 97 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Some Examples: ESL (ATHENA type LV) ARIANE 5

98 98 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ESL SRMs

99 99 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ATHENA type LV: Optimized solutions kg Total propellant mass payload PX-PY-PZ PX-PX-PZ PX-PY-PY

100 100 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ATHENA type LV: Recurring Cost w/o production effects kg A cost optimization may follow a performances optimization. For a given payload, an taking into account production effects, 3- stages LV with 2 identical stages is no more expensive than the best one. PX-PY-PZ PX-PX-PZ PX-PY-PY Payload Cost/kg

101 101 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ATHENA Type LV: First Stage Real Laws vs Spec Pure Finocyl Finocyl-Star Maxtom issue

102 102 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ATHENA Type LV: Finocyl vs Star -Finocyl Grain

103 103 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr MPS Motors Design and Technologies largely based on know-how gained during French Defense R&T and Programs Moderated Combustion Pressure (60 bar) Metallic Case Three segments

104 104 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Current ARIANE 5 SRB Relative Velocity Altitude Injection Point Dynamic Pressure Thermal Fluxes Hermes Safeguard Trajectory ß<ßmax

105 105 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Current ARIANE 5 SRB Q Tcu

106 106 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ARIANE 5 : BOOSTER THRUST LAW SHAPE OPTIMISATION DESIGN OF THE THRUST LAW SHAPE THRUST TIME Fm Fa Pdyn, th, max,In-Flight Loads max Stage Separation Tc Twin Boosters: slope, max OPTIMISATION PARAMETERS: Fm,Fm/Fa, Tc via SRB performance Thrust law shape,Tc via Trajectography and Launcher mass (General Loads) CONSTRAINTS: Maximum values of Pdyn, th, max, Launch-Pad Safety,Stages Fall- out…..

107 107 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ARIANE 5 PROPELLANT GRAIN

108 108 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ARIANE 5 PROPELLANT GRAIN

109 109 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Current ARIANE 5 SRB

110 110 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr FALL-OUT CONSTRAINT EPC SRBs EPC Fall-Out Constraint may limit the benefits of an improvement

111 111 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ARIANE 5 SRB IMPROVEMENT Constraints : Distance between SRBs axes Distance between attachment points And so roughly the Diameter Thrust law, Tc STAGING and PROPULSION OPTIMIZATION

112 112 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ARIANE 5 with New Composite Twin Segment SRBs

113 113 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ARIANE 5 : BOOSTER THRUST LAW SHAPE OPTIMISATION DESIGN OF THE THRUST LAW SHAPE

114 114 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ARIANE 5 : BOOSTER THRUST LAW SHAPE OPTIMISATION General loads sizing In-flight maximum compression flux ( c ) All the upper part of the launcher is dimensioned (central core tank included) c = N/2 R +M/ R 2 with N normal load and M Bending Moment c is a function of the above mass,thrust,angle of attack due to wind and gust, aerodynamic forces

115 115 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ARIANE 5 : BOOSTER THRUST LAW SHAPE OPTIMISATION DESIGN OF THE THRUST LAW SHAPE Effects on upper structures : several hundred kg Practical constraint: maximum allowed Pdyn(+20%)

116 116 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ARIANE 5 with New Composite Twin Segment SRBs

117 117 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr After Combustion Pressure Optimization, payload increase of more than 2 tons ARIANE 5 with New Composite Twin Segment SRBs

118 118 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr DESIGN OF THE THRUST LAW SHAPE CASTOR 120 : 1 st and 2 nd Stage Versions Vacuum Thrust (Lbf) 1 ST STAGE 2 ND STAGE Time (Second)

119 119 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr COMMERCIAL WORLD COMPETITION THE MAIN LAUNCH VEHICLES

120 120 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr Vandenberg Wallops Canaveral Kourou Alcantara Equator Srihankota Xichang Jiuquan Taiyuan Kagoshima Tanegashima Svobodn Baikonour Plesetsk ARIANE CZ ATLAS 3, 5 DELTA 3, 4 SEA LAUNCH ANGARA PROTON K/M SOYUZ H2A Performance GTO ~ Kourou Atlas IIIA - 3,7t Atlas IIIB2 - 4,1t Atlas V(401) - 4,5t Atlas V(501) - 3,9t Atlas V(551) - 7,9t Delta III - 3,4t Delta IV(4,0) - 3,7t Delta IV(5,2) - 4,0t Delta IV(5,4) - 5,7t Delta IV(HLV) - 12t Sea Launch - 5,3t Sea Launch 2 - 6,0t Proton K - 4,9t Proton M - 5,5t Angara 3 (*) - 2,5tCZ-3A - 2,3t CZ-3C - 3,3t CZ-3B - 4,5t H-2A(202) - 3,7t H-2A(2022) - 4,0t H-2A(212) - 6,7t H-2A(222) - 8,5tAngara 5 (*) - 5,2t (*): TBC LAUNH VEHICLE: INTERNATIONAL COMPETITION

121 121 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ATLAS FAMILY

122 122 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ATLAS 5 LOx/Kero First stage LOx/LH2 Upper Stage

123 123 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr DELTA FAMILY DELTA IV : all LOx/LH2 stages

124 124 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PROTON & ANGARA

125 125 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr SOYUZ

126 126 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr ARIANE

127 127 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr H2A

128 128 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr LONG MARCH

129 129 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr CHARACTERISTICS OF SOME LAUNCHERS

130 130 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr CHARACTERISTICS OF SOME LAUNCHERS

131 131 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr EELV Competition: 2 different ways DELTA 4: 12t max oone GG Low cost LOX/LH2 Engine RS68 oParallel architecture ATLAS 5: 8.2t max oOne SC LOX/Kero engine- Low Income country Manufacturing oLinear architecture: SRM assisted Lift-off

132 132 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr PROJET METHODE On a un nombre détages fixé ou variable. A partir de la donnée du ou des DV il faut choisir : La technologie et les ergols On en déduit alors des indices structuraux et des impulsions spécifiques On calcule alors les masses de propergol et les masses inertes (à CU donnée) On calcule alors le bilan masse global On vérifie les hypothèses (indices et impulsion spécifique) Eventuellement on itère. Pour les dimensions du moteur, on se fixe un niveau de poussée et on en déduit les dimensions principales. Pour les dimensions étages et réservoirs, on se fixe un diamètre


Download ppt "1 Max Calabro 2002 ESTACA Projet Propulsion Lanceur Levallois-Perret, 10 Apr. 2008 Launch Vehicles Propulsion Technologies Max CALABRO."

Similar presentations


Ads by Google