Download presentation

Presentation is loading. Please wait.

1
**Jihye Chun Kyungjin Lee Rick Jantz Yang Song**

Bruin at Work Jihye Chun Kyungjin Lee Rick Jantz Yang Song

2
**Regression Statistics**

Cost Regression SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 5 ANOVA df SS MS F Significance F Regression 2 3.23E-05 Residual 2000 1000 Total 4 Coefficients t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 7680 X Variable 1 15.94 X Variable 2

3
**Regression Statistics**

Revenue Regession SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 5 ANOVA df SS MS F Significance F Regression 2 3.05E+08 1.52E+08 Residual 585636 Total 4 3.06E+08 Coefficients t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept X Variable 1 X Variable 2

4
**Basic Equations TC = 7680 + 15.94Q – 0.0012Q2**

TR = Q – Q2 Profit = Q Q2

5
**Optimal Quantity and Price**

d(Profit)/d(Q) = Q – 3.31 Q = 2364 P(Q) = TR/Q = 21203/Q – Q P(2364) =

6
**A General Model Two regressions: Cost and Revenue**

Two X-values used in regression: Q and Q2 Inputs can be altered to fine the optimal price Green = input Red = output B1 B2 B3 Cost 7680 15.94 Revenue 21203 12.63 Profit 13523 -3.31 0.0007 Optimal Values Q P 20.42

7
**Regression Statistics**

Increase in Demand B1 B2 B3 Cost 7680 15.94 Revenue 23323 12.63 Profit 15643 -3.32 0.0008 Optimal Values Q P 22.18 SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 5 ANOVA df SS MS F Significance F Regression 2 3.69E+08 1.84E+08 Residual Total 4 3.7E+08 Coefficients t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept X Variable 1 X Variable 2

8
**Optimistic Estimations**

B1 B2 B3 Cost 7680 15.94 Revenue 19082 12.63 Profit 11402 -3.31 0.0007 Optimal Values Q P 18.71 SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 5 ANOVA df SS MS F Significance F Regression 2 2.47E+08 1.23E+08 Residual Total 4 2.48E+08 Coefficients t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept X Variable 1 X Variable 2

9
**Conclusions Optimal Price is slightly higher than current price**

Our Analysis is very sensitive to changing circumstances Given the data available, P = 20 is a reasonable Price As demand increases, we should raise our price and cut our quantity produced

Similar presentations

© 2024 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google