Download presentation

Presentation is loading. Please wait.

1
**Schrodinger wave equation**

► The position of a particle is distributed through space like the amplitude of a wave. ► In quantum mechanics, a wavefunction describes the motion and location of a particle. ► A wavefunction is just a mathematical function which may be large in one region, small in others and zero elsewhere.

2
**Concepts of Wave function**

► If the a wavefunction is large at a particular point (i.e., the amplitude of the wave is large), then the particle has a high probability of being found at that point. If the wavefunction is zero at a point, then the particle will not be found there. ► The more rapidly a wavefunction changes from place to place (i.e., the greater the curvature of the wave), the higher kinetic energy of the particle it describes.

3
**Schrodinger wave equation**

for a 1-D system for a 3-D system where for Cartesian coordinate for spherical coordinate

4
**System with Spherical Symmetry**

where

5
**Eigenstate ► in general, the Schrodinger eqn is**

► H is the Hamiltonian operator, i.e., the energy operator. ► Schrodinger eqn is an eigenvalue equation (operator)(function) = (constant) x (same function) eigenvalue eigenfunction

6
**Operator ►(operator) (function) = (constant) x (same function)**

The factor is called the eigenvalue of the operator ► The function (which must be the same on each side in an eigenvalue equation) is called an eigenfunction and is different for each eigenvalue. ► An eigenvalue is a measurable property of a system, an observable. Each observable has a corresponding operator. (operator for observable) (wavefunction) = (value of observable) x (wavefunction)

7
Examples of Operators ► A basic postulate of quantum mechanics is the form of the operator for linear momentum. ► If we want to find the linear momentum of a particle in the x direction, we use the following eigenvalue equation. ► The eigenvalue, p, is the momentum.

8
Correspondence ► The kinetic energy operator is then created from the momentum operator. ► If we want to find the kinetic energy of a particle in the x direction, we use the following eigenvalue equation. the eigenvalue, E, is the kinetic energy

9
**What is the wavefunction?**

► So what’s the big deal? This should be straight forward?? ► Just carry out some operation on a wavefunction, divide the result by the same wavefunction and you get the observable you want. ► Each system has its own wavefunction (actually many wavefunctions) that need to be found before making use of an eigenvalue equation. ► The Schrodinger equation and Born’s interpretation of wavefunctions will guide us to the correct form of the wavefunction for a particular system.

10
**Born interpretation of the wavefunction**

► In the wave theory of light, the square of the amplitude of an electromagnetic wave in a particular region is interpreted as its intensity in that region. ► In quantum mechanics, the square of the wavefunction at some point is proportional to the probability of finding a particle at that point.

11
**Interpretation probability density**

no negative or complex probability densities written Both large positive and large negative regions of a wavefunction correspond to a high probability of finding a particle in those regions.

12
**Normalization constant**

► A normalization constant is found which will insure that the probability of finding a particle within all allowed space is 100%.

13
**Born interpretation of the wavefunction**

► There are several restrictions on the acceptability of wavefunctions. ► The wavefunction must not be infinite anywhere. It must be finite everywhere. ► The wavefunction must be single-valued. It can have only one value at each point in space. ► The 2nd derivative of the wavefunction must be well-defined everywhere if it is to be useful in the Schrodinger wave equation.

14
**Born interpretation of the wavefunction**

► The 2nd derivative of a function can be taken only if it is continuous (no sharp steps) and if its 1st derivative is continuous. ► Wavefunctions must be continuous and have continuous 1st derivatives. ► Because of these restrictions, acceptable solutions to the Schrodinger wave equation do not result in arbitrary values for the energy of a system. ► The energy of a particle is quantized. It can have only certain energies.

15
Expectation value ► Let’s find the average score on a quiz. There were 5 problems on the quiz, worth 20pts each (no partial credit). The scores for 10 students are given below. 80, 80 On this particular quiz, 1/5 of the students received a score of 80. On future similar quizzes, we could say the probability of getting a score of 80 is 1/5. 60, 60, 60, 60 40, 40, 40 20 What is the average score? 54

16
Expectation value 80, 80 60, 60, 60, 60 40, 40, 40 20 ► We calculated the average by multiplying each score by the probability of receiving that score and then found the sum of all those products.

17
**Heisenberg’s uncertainty principle**

► It is impossible to specify simultaneously, with arbitrary precision, both the momentum and the position of a particle. ► If the momentum of a particle is specified precisely, it is impossible to predict the location of the particle. ► If the position of a particle is specified exactly, then we can say nothing about its momentum.

Similar presentations

© 2021 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google