Presentation is loading. Please wait.

Presentation is loading. Please wait.

THERMO-MECHANICAL DESIGN | PAGE 1 CEA Saclay 2015.

Similar presentations


Presentation on theme: "THERMO-MECHANICAL DESIGN | PAGE 1 CEA Saclay 2015."— Presentation transcript:

1 THERMO-MECHANICAL DESIGN | PAGE 1 CEA Saclay 2015

2 THERMO-MECHANICAL DESIGN Design overview Thermo-mechanical calculations Hypothesis Entrance slits Beam-stopper Mechanical interfaces EMU – Actuator interface Actuator – Diagnostic chamber interface | PAGE 2 CEA Saclay 2015

3 DESIGN OVERVIEW | PAGE 3 CEA Saclay 2015

4 DESIGN OVERVIEW | PAGE 4 CEA Saclay 2015 4 Beam stopper Entrance slits Deviation plates Exit slits Faraday cup

5 DESIGN OVERVIEW Nominal positions Lower slice of the beam -50mm Upper slice of the beam +50mm « Safety position » +150mm | PAGE 5 CEA Saclay 2015 User defined IDRequirementDesign LEBT_PBI_EMU-005160mm200mm

6 THERMO-MECHANICAL CALCULATIONS | PAGE 6 CEA Saclay 2015

7 THERMO-MECHANICAL CALCULATIONS Hypothesis First hypotheses : gaussian power deposition Beam characteristics (Réf : « L5_LEBT_EMU » 2015/30/01) Nodal power deposition Steady-state analysis Material physical datas : Advanced Energy Technology Group http://aries.ucsd.edu/LIB/PROPS/PANOS/cu.html | PAGE 7 CEA Saclay 2015 DescriptionValueUnit Beam energy75kV Beam intensity at peak 100mA Repetition rate14Hz Duty cycle8% MINIMAL beam size (in sigma) 1.5mm MAXIMAL beam size diameter 80mm Average power absorbed 625W

8 THERMO-MECHANICAL CALCULATIONS Entrance slits Two entrance slits, with two identical cross-section Exchangeable parts Pure copper-made | PAGE 8 CEA Saclay 2015 0.2rad User defined IDRequirementDesign LEBT_PBI_EMU-004+/-100mrad+/-200mrad LEBT_PBI_EMU-004 MIN:60mm MAX:100mm

9 THERMO-MECHANICAL CALCULATIONS Configuration 1 Beam hits a slit on the surface normal to the beam direction, only one slit is exposed. | PAGE 9 CEA Saclay 2015 Configuration 2 EMU slits centered on the beam, slits are equally exposed. Entrance slit Beam-stopper

10 THERMO-MECHANICAL CALCULATIONS Convective boundary condition Heat exchange coefficient : h=10919W/m².K Volumetric water flow rate : 4L/min Inlet water temperature : 22°C Working pressure : 6 Bars Linear velocity : 2.4m/s | PAGE 10 CEA Saclay 2015

11 THERMO-MECHANICAL CALCULATIONS Configuration 1 Power dissipated : 619W Through convective boundary condition (neglecting radiation) | PAGE 11 CEA Saclay 2015

12 THERMO-MECHANICAL CALCULATIONS Temperature field : Max : 307°C Temperature gradient in the slit : | PAGE 12 CEA Saclay 2015

13 THERMO-MECHANICAL CALCULATIONS Temperature on convective boundary condition : Max : 92°C Saturation properties for water (pressure increment) | PAGE 13 CEA Saclay 2015

14 THERMO-MECHANICAL CALCULATIONS Von Mises stresses : Max : 81MPa No brazing Choice of the material | PAGE 14 CEA Saclay 2015 ! !

15 THERMO-MECHANICAL CALCULATIONS Maximum entrance slit displacements : On Z : max : -10µm On X : max : -7µm | PAGE 15 CEA Saclay 2015 10µm 7µm Conclusions for Configuration 1: High levels of temperature : structural integrity of the slits cannot be guaranteed Thermal expansion of copper : loss of approximately 10% of the beam after entrance slits

16 THERMO-MECHANICAL CALCULATIONS Configuration 2 Power dissipated : 304W Through convective boundary Condition (neglecting radiation) | PAGE 16 CEA Saclay 2015

17 THERMO-MECHANICAL CALCULATIONS Temperature field : Max : 114°C Temperature gradient in the slit : | PAGE 17 CEA Saclay 2015

18 THERMO-MECHANICAL CALCULATIONS Temperature on convective boundary condition : Max : 70°C Saturation properties for water (pressure increment) | PAGE 18 CEA Saclay 2015

19 THERMO-MECHANICAL CALCULATIONS Von Mises stresses : Max : 36MPa Choice of the material | PAGE 19 CEA Saclay 2015

20 THERMO-MECHANICAL CALCULATIONS Maximum entrance slit displacements : On Z : max : -12µm On X : max : 11µm | PAGE 20 CEA Saclay 2015 12µm 11µm Conclusions for Configuration 2: Entrance slits are both exposed to the same amount of power Thermal expansion of copper : loss of approximately 12% x 2 = 24% of the beam after the entrance slits

21 THERMO-MECHANICAL CALCULATIONS Influence of standard deviation on : Temperature fields | PAGE 21 CEA Saclay 2015

22 THERMO-MECHANICAL CALCULATIONS Influence of standard deviation on : Von Mises stresses fields | PAGE 22 CEA Saclay 2015

23 THERMO-MECHANICAL CALCULATIONS Influence of standard deviation on : Displacements | PAGE 23 CEA Saclay 2015

24 THERMO-MECHANICAL CALCULATIONS Influence of standard deviation on : Measure | PAGE 24 CEA Saclay 2015

25 THERMO-MECHANICAL CALCULATIONS Beam-stopper Separately cooled : 8L/min No contact with the entrance slits | PAGE 25 CEA Saclay 2015

26 THERMO-MECHANICAL CALCULATIONS Beam-stopper Maximum temperature | PAGE 26 CEA Saclay 2015 1.5 mm3 mm Max : 233°CMax : 150°C

27 THERMO-MECHANICAL CALCULATIONS Beam-stopper Maximum temperature (water) | PAGE 27 CEA Saclay 2015 1.5 mm3 mm Max : 60°CMax : 57°C

28 Beam-stopper Maximum stresses THERMO-MECHANICAL CALCULATIONS | PAGE 28 CEA Saclay 2015 Max : 182MPaMax : 113MPa 1.5 mm3 mm

29 THERMO-MECHANICAL CALCULATIONS Conclusion : For safety and reliability measurement matters : INCREASE STANDARD DEVIATION OF THE BEAM Steady-state simulations Guaranty mechanical integrity and stability of the parts Guaranty a minimum level of reliability of measures | PAGE 29 CEA Saclay 2015 DescriptionValueUnit MINIMAL beam size (in sigma) 3mm MAXIMAL beam size diameter 80mm

30 MECHANICAL INTERFACES | PAGE 30 CEA Saclay 2015

31 MECHANICAL INTERFACES Admissible defects from emittance measurement point of view | PAGE 31 CEA Saclay 2015 BEAM 90°

32 MECHANICAL INTERFACES Actuator – Diagnostic chamber interface Global angular positionning guaranteed : +/-0.25° | PAGE 32 CEA Saclay 2015 BEAM User defined IDRequirementDesign LEBT_PBI_EMU-0070.5°+/-0.25°

33 MECHANICAL INTERFACES EMU – Actuator interface CF100 flange Connectors and pick-ups : 1x BNC 2x SHV-10 2x thermocouples 1-pair 1x SHV-5 Hydraulic supply : 4x 12-10mm diameter tubes Two-levels interface to optimize actuator dimensions Length of the rod allowing both 370mm from the CF250 200mm stroke | PAGE 33 CEA Saclay 2015

34 MECHANICAL INTERFACES EMU – Diagnostic chamber interface Machining and positionning tolerances Global defect : approx. 0,1mm Global defect : approx. 0,3mm Global defect : approx. 0,2mm | PAGE 34 CEA Saclay 2015


Download ppt "THERMO-MECHANICAL DESIGN | PAGE 1 CEA Saclay 2015."

Similar presentations


Ads by Google