Presentation is loading. Please wait.

Presentation is loading. Please wait.

Present and Future of LEPS and LEPS2 Takashi Nakano (RCNP, Osaka Univ.) for the LEPS&LEPS2 collaboration HYP2015, September 8th, 2015 1.

Similar presentations


Presentation on theme: "Present and Future of LEPS and LEPS2 Takashi Nakano (RCNP, Osaka Univ.) for the LEPS&LEPS2 collaboration HYP2015, September 8th, 2015 1."— Presentation transcript:

1 Present and Future of LEPS and LEPS2 Takashi Nakano (RCNP, Osaka Univ.) for the LEPS&LEPS2 collaboration HYP2015, September 8th, 2015 1

2 Outline LEPS Overview Some recent results HD target LEPS2 Overview First experiment Summary 2

3 Laser Electron Photon beamline at SPring-8 3 Operated since 2000.

4 Backward-Compton Scattered Photon 4 PWO measurement tagged Linear Polarization of  beam photon energy [GeV]photon energy [MeV] 8 GeV electrons in SPring-8 + 350nm(260nm) laser  maximum 2.4 GeV(2.9 GeV) photon Laser Power ~6 W  Photon Flux ~1 Mcps E  measured by tagging a recoil electron  E  >1.4 GeV,  E  ~10 MeV Laser linear polarization 95-100% ⇒ Highly polarized  beam

5 LEPS spectrometer K-K- K+K+ DC3 DC2 DC1 Beam Start counter (STC) SSD AC ・ Dipole magnet : 0.7 Tesla ・ Acceptance : Hori : ± 20° Vert : ± 10° ・ AC index : 1.03 (reject 0.6 GeV/c π ) x z y ・ E γ = 1.5 ~ 2.4 GeV ・ tagger rate : ~10 6 cps ・ trigger rate : ~ 100 cps

6 γ n p K+K+ K-K- p n Θ+Θ+ spectator signal events γ n p K+K+ K-K- p n Λ(1520) spectator reference events Θ + study at LEPS Θ + production via γd → K - Θ + → K - K + pn Spectator can not escape from the target. signal events : γn → K - K + n reference events : γp → K - K + p n/p separation is possible by improving the proton detection efficiency.

7 Effect of proton rejection proton rejection cut z-vertex cut 90% of proton events (with a neutron spectator) are identified by selecting events stemming from the downstream part of the target. Enhancement is seen in the Θ + signal region. Repeat the experiment with improved proton detection efficiency. 2003-04 & 2006-07 data

8 Large STC (LSTC) x : 780 mm y : 340 mm z : 10 mm Large STC (LSTC) x : 780 mm y : 340 mm z : 10 mm Small STC x : 150 mm y : 94 mm z : 5 mm Small STC x : 150 mm y : 94 mm z : 5 mm 2006 - 20072013 - 2014

9 proton detection with STC Proton detection efficiency is improved by using large-area start counter (STC) in 2013-2014 run. energy loss at STC p K+K+ K-K- n K+K+ K-K- or proton untagged with STC p K+K+ K-K- proton tagged with STC signal K +,K - detect K +,K - detect K +,K -,p detect K +,K -,p detect 2006 - 2007 LH 2 2013 - 2014 LH 2 K +,K - detect K +,K - detect K +,K -,p detect K +,K -,p detect

10 2006 - 2007 90% point 2013 - 2014 90% point 2006 - 20072013 - 2014 efficiency becomes ~90 % for events with z-vertex > -960 mm for 2006-07 data with z-vertex > -1040 mm for 2013-14 data z-vertex [mm] Counts : 2006 - 2007 LH 2 : 2013 - 2014 LH 2 z-vertex point dependence Overall proton detection efficiency is: ~60% for 2006-7data ~85% for 2013-14 data Events from LH2 target. Measured proton detection efficiency

11 γp → K + X γd → K + X 2006 - 2007 2013 - 2014 2006 - 2007 2013 - 2014 MM(K + ) [GeV/c 2 ] Counts assuming proton mass for missing mass calculation Quality of K + missing mass spectra are the almost same. K + missing mass spectra

12

13

14

15

16 S.Y. Ryu, phD thesis, 2015

17 Kaonic nuclei search 17  K/K *  Virtual K, K * p p n n N N N N K K π direct K-exchange is forbidden in (π +,Κ + ) reaction. π+π+ Κ+Κ+ K0K0 K-N interaction is strongly attractive (I=0). weakly attractive (I=1).  KNN bound state (K - pp, K - pn, K - nn)

18 K - pp search via  + d  K + +   + X From likelihood ratio method;  = 20 MeV : 0.17 - 0.55  b  = 60 MeV : 0.55 - 1.7  b  = 100 MeV : 1.1 - 2.9  b n       Search region 2.22 – 2.36 GeV/c 2 Significant peak cannot be observed.  ~ 10% of Q.F. processes MM(K +  - ) Upper limit of cross section (95% C.L.) ~10% of Q.F processes So far, no peak was observed in inclusive modes. We will try to detect decay products. → Larger acceptance, LEPS2.

19 Development of HD polarized target RCNP ~100 km

20 Calibration data taken in Dec. T=0.52 K T=4.2 K P H = 44 +- 1 % Measurements Time (day)  = 239 +- 66 days about 8 months T = 300 mK B = 1 Tesla P P P H Polarization & Relaxation time in HD

21

22 Recoil electron (tagging) LEP (GeV  -ray) Laser room Inside SR bldg 30m long line 8 GeV electron Laser Outside SR bldg Experimental bldg Beam dump BGOegg LEPS2 spectrometer Storage ring 10 times high intensity: Multi-laser injection & Laser beam shaping Best e-beam divergence (12  rad)  Photon beam does not spread out  Construct experimental apparatus outside SR bldg Backward Compton scattering BGO EM calorimeter Large LEPS2 spectrometer using BNL/E949 magnet  expect better resolutions ~135 m

23 BL31 =14  rad. BL33 =58  rad. Reaction region (30m) Reaction region (7.8m) Tagging point e- e-  e- e-  Divergence of LEP beam Better divergence  Better tagging resolution Smaller beam size at long distance LEPSLEPS2

24 LEPS2 Detector 24  TPC DC  counter RPC TOP B=1 T :  p/p  1% for  TPC Prototype Residual RMS=117  m RPC ToF time distribution 2.22 m 5 m >3  K/  separation @1.1 GeV/c 2

25  + Search at LEPS2 25 pK s invariant mass K * missing mass (t-channel K-exchange is possible) No Fermi motion correction. No φ background. To measure angular dependence of production rate in large angle region, up to CLAS acceptance. A large acceptance and better resolution detector is necessary.

26 γ ‘n’ → K - Θ + → K - K 0 s p → K - π + π - p K- π p LEPS1 CLAS LEPS2 Wide acceptance for K -. Covers CLAS acceptance. K - ID in p < 1.4 GeV/c. Large acceptance for multi-particle productions. Search for Θ + in the invm(K 0 s p). No need for Fermi-motion correction. No  background 。 E γ = 2.4 GeV Expected invariant mass resolution 26

27 Two pole structure of  (1405) 27 D. Jido, et al. NPA725(2003) V.K. Magas, E. Oset and A. Ramos, PRL 95

28 E  K* K  p  K-K- K*(890) Λ(1405) photoproduction with linearly polarized photon 28

29 E  K* K  p  K-K- K*(890) Λ(1405) photoproduction with linearly polarized photon T.Hyodo et. al, PLB593 29

30 Exp. hall was constructed. (2010.Oct-2012Jan) Installation of the E949 magnet (2011.Nev-Dec)  counters were installed. (2012.June) Beam pipe (2012.May) 30

31 Comparison of LEPS and LEPS2 LEPSLEPS2 Beam Intensity (~2.4 GeV)2~3x10 6 (2 lasers)<10 7 (4 high-power lasers) Beam Intensity (~2.9 GeV)2~3x10 5 (2 lasers)<10 6 (4 high-power lasers) PolarizationLinear/Circular Detector Area42m 2 x 3m(h)198m 2 x 10m(h) Charged Particle Acceptance 0~30 degrees7~120 degrees Momentum Resolution0.5% (for 1-GeV kaon)1~1.5% (for 1-GeV kaon) Photon Coveragenone30~110 degrees 31

32 Experimental Setup 32  BGOegg Inner Plastic Scintillator (IPS) Drift Chamber (DC) Resistive Plate Chamber (RPC) Cylindrical Drift Chamber (CDC) Target 6.8  z=0 m 1.28 m E949  -counter 2 m (Vertical) x 3.2 m (Horizontal) 6.8  z=12.5 m 21  E949 Magnet z=1.6 m Upstream Charge Veto Counter Tagged Photon Energy : 1.3 – 2.4 GeV (355 nm UV laser) Tagged Photon Intensity : 1.4 – 1.8 Mcps (3 or 4 laser injection) From 2015A UpVeto counter has been enlarged since 2015 Jan.

33 BGO-Egg : constructed @ ELPH, Tohoku U. Large acceptance photon detector (BGO-Egg) 1320 BGO crystals Covering 24 o ~144 o polar angle 1.3% energy resolution for 1 GeV

34 Summary of Data Collection 34 PeriodTarget Integrated # of  ’s (tagged E  region) = tagger counts  dead time corr.  DAQ eff. 2014A (Apr.  July) Carbon/CH 2 [20 mm] C: 1.31  10 12, CH 2 : 1.58  10 12 (In total, C: 4.29  10 12, CH 2 : 2.56  10 12 ) Additionally, empty target 2014B (Nov.  Feb.) LH 2 [40 mm] Hori: 2.24  10 12, Vert: 2.01  10 12 Additionally, empty target & nuclear targets 2015A (Apr.  July) Carbon [20 mm] 9.77  10 12 (Vert: 8.97  10 12 ) Additionally, empty target & CH 2 target All the detector systems have been stably operated in 2015A.

35 Experimental setup 35 γ + 12 C -> η’ x 11 B + p 12.5m 7°7° 24 ° 144 ° BGOegg calorimeter  Forward TOF target Tagging counter Storage Ring LEPS2 building Drift Chamber Tracking e-e- 150 MeV H.Nagahiro et al. PRC74(2006)45203

36 γ + 12 C -> η’ x 11 B + p Experimental method 36 Identify η’ production by η tag BGOegg calorimeter 1m 2 γ 3π 0 ->6 γ → → η (39%) 2m 3.2m Search for a bound state Forward TOF 12.5m from the target Vert : ± 7 ° Hori: ± 4 ° (33%)

37 Expected energy spectrum 37 2.4 GeV γ 0°0° NJL model calculation No shift -1001000 bound 150MeV shift ΔE=28MeV bound multi π Secondary η E ex -E 0 (MeV) ΔE=28MeV η tag (6 γ ) E ex -E 0 (MeV) H. Nagahiro Small background See signals in bound region counts

38 η tag by BGOegg (C target run) 3π 0 invariant mass 3 neutral cluster combinations minimizing η -> 3 π 0 -> 6 γ decay mode BGOegg cluster = 6 or 7 3π 0 InvM (MeV) 2 γ InvM (MeV) Energy re-calculate sigma 8.0±0.1MeV (PDG:547.9MeV) η tag (3σ)side band (3-6σ) Choose best π 0 combination small combinatorial (multi π) BG mean 548.0±0.1MeV 110-160MeV 2 γ invariant mass

39 Proton missing mass spectra γ + 12 C -> X + p (γ + 12 C -> η’ x 11 B + p) Mx – M 11B - M η’ η tag (signal region masked) missM ’ (MeV ) large η related BG ηX (ηπ, ηππ) secondary η (πN→ηN) MC simulation missM(MeV) side band 20MeV/bin Signal region (-200~200MeV) masked cos (ηp Opening angle) -200 < MisM <200MeV masked no events in < -0.9 cosOpen

40 Mass spectra from CH 2 target run 6-gamma missing mass 2-gamma missing mass MeV Select proton 6-gamma invariant mass2-gamma invariant mass MeV require   and    ’’

41 Combination of BGOegg and RPC(TOF) Proton missing mass for 2 gammas Momentum conservation Invariant mass and proton missing mass Invariant mass of 2 gammas Invariant mass of 6 gammas Proton missing mass for 6 gammas By using both BGOegg and RPC, background events are cleaned up. MeV    ’’ ’’ ’’   ’’  require   and  presented by T. Nam@SNP

42 Summary 42 LEPS Updates on Θ +,  interference, kaonic nuclei search. Development of the HD target LEPS2 x10 luminosity. ~10Mcps. Two different experimental setups. Solenoid spectrometer Θ +, Λ(1405) BGO EGG + TOF(RPC) Backward meson production from proton and nuclei BGO EGG experiment was started last year.


Download ppt "Present and Future of LEPS and LEPS2 Takashi Nakano (RCNP, Osaka Univ.) for the LEPS&LEPS2 collaboration HYP2015, September 8th, 2015 1."

Similar presentations


Ads by Google