Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 IceCube Christian Spiering for the IceCube Collaboration EPSC, Cracow July 2009.

Similar presentations


Presentation on theme: "1 IceCube Christian Spiering for the IceCube Collaboration EPSC, Cracow July 2009."— Presentation transcript:

1 1 IceCube Christian Spiering for the IceCube Collaboration EPSC, Cracow July 2009

2 2 The IceCube Collaboration USA: Bartol Research Institute, Delaware University of California, Berkeley University of California, Irvine Pennsylvania State University Clark-Atlanta University Ohio State University Georgia Tech University of Maryland University of Alabama, Tuscaloosa University of Wisconsin-Madison University of Wisconsin-River Falls Lawrence Berkeley National Lab. University of Kansas Southern University and A&M College, Baton Rouge University of Alaska, Anchorage Sweden: Uppsala Universitet Stockholm Universitet UK: Oxford University Belgium: Université Libre de Bruxelles Vrije Universiteit Brussel Universiteit Gent Université de Mons-Hainaut Germany: DESY-Zeuthen Universität Mainz Universität Dortmund Universität Wuppertal Humboldt Universität MPI Heidelberg RWTH Aachen Japan: Chiba University New Zealand: University of Canterbury 33 institutions, ~250 members Netherlands: Utrecht University Switzerland: EPFL

3 3 AMANDA IceCube The Amundsen-Scott Station South Pole Station Building Astronomy Sector skiway

4 4 IceCube 05/06: 8 Remaining: 22 IceCube Strings 5 DeepCore Strings  complete in January 2011 IceCube Observatory

5 5 IceCube/Amanda Selected results cosmic ray (CR) spectrum,  CR composition  CR anisotropies  shadow of the moon  atmospheric neutrinos (oscillations, effects of quantum gravity, … )  neutrino point sources  gamma ray bursts  multimessenger approaches  diffuse fluxes  dark matter  magnetic monopoles  supernova bursts  atmosphere physics  glaciology  new technologies for highest energies (radio, acoustics)  IceCube high energy extension plans 

6 6 Shadow of the Moon Cosmic Rays  Absolute pointing  1°  Angular resolution  1° 0.5° 8 months IceCube 40 strings Downward muons, max. 28° above horizon, median energy of primary parent ~ 30 TeV

7 7 Large-scale anisotropy of downgoing muons IceCube (40 strings 2008) anisotropies on the per-mille scale (skymap in equatorial coordinates) 90 -90 24h 0 0 90 -90 12 TeV 126 TeV

8 8 MILAGRO Compare to Northern hemisphere Tibet air shower array Simulation (Lallement et al. Science 2005) Compton-Getting effect ? Heliosphere effect ? Nearby pulsars ? Interstellar magnetic field ? First observation on Southern hemi- sphere adds important piece of information.

9 9 Search for neutrino point sources Amanda 2000-2006 6595 Events

10 10 5 δ=90º 24h 0h Max Significance δ=54º, α=11.4h 3.38σ 95 of 100 background maps (data randomized in RA) have a point with significance ≥ 3.38  Amanda 2000-2006 significance map 0 2.5 5

11 11 First look above horizon (IceCube 2007, 22 strings) PeV-EeV range Southern hemisphere Northern hemisphere Sensitivity of ¼ IceCube, 1 year ~ 2 x sensitivity of Amanda 7 years  enter new territory !

12 12 Northern hemisphere TeV - PeV Background: atmospheric neutrinos Southern hemisphere PeV - EeV Background: atmospheric muons Reduced by 10 -5 using energy cut 175.5 days livetime, 6796 up-going events, 10981 down-going events Preliminary All-sky map (6 months IceCube 2008, 40 strings)

13 13 Hottest location at r.a.=114.95°, dec.=15.35° Pre-trial -log 10 (p-value) = 4.43 all-sky p-value is 61%  not significant Preliminary All-sky map (6 months IceCube 2008, 40 strings)

14 14 Point Sources limits/sensitivities AMANDA 7 yr 40-string Discovery Potential: 5 σ in 50% of trials 40-string Sensitivity: Flux excluded at 90%cl ANTARES IC22 SK MACRO 80-string Sensitivity: Based on 40-string analysis 40 string results preliminary

15 15 Diffuse Neutrino Fluxes IceCube EHE analysis WB bound GZK Auger IceCube atm. Integral limits (E -2 flux) from Baikal, Amanda IceCube

16 16 t ~ -10  -100st ~ 0  t90 t ~ t90  ? Waxman & Bahcall, PRL 78:2292 (1997) Waxman & Bahcall, ApJ 541:707 (2000) Razzaque et al., PRD 68 (2003) Neutrinos from GRB

17 17 t ~ -10  -100st ~ 0  t90 t ~ t90  ? Waxman & Bahcall, ApJ 541:707 (2000) Neutrinos from GRB AMANDA limit from 408 bursts 1997-2003 Waxman-Bahcall GRB prediction 10 -10 10 -7 10 -8 10 -9 10 4 10 6 10 5 10 7 10 8 neutrino energy E (GeV) E 2  flux (GeV  cm -2  s -1  sr -1 )

18 18 Neutrinos from naked-eye GRB080319B  Duration: 70 s, z=0.94  Brightest GRB (optical) ever  Large number of  -ray, x-ray, UV and optical, observations Pi of the Sky  Detector was in maintenance mode 9 out of 22 strings.  Signal expectation: 0.1 events (  = 300)  No events at GRB position/time after cut  Limit Full-IceCube expectation ~ 1 event

19 19 Indirect Dark Matter Search Sun Detector Earth Amanda skymap around Sun

20 20 Indirect Dark Matter Search

21 21 Indirect Dark Matter Search ….. apply to spin-dependent cross section Models with strong spin-dependent coupling are the least constrained by direct DM searches. W.r.t. spin-dependent coupling, Amanda & IceCube are ~100 times more sensitive than direct search experiments (Sun is mostly hydrogen) Effect of DeepCore

22 22


Download ppt "1 IceCube Christian Spiering for the IceCube Collaboration EPSC, Cracow July 2009."

Similar presentations


Ads by Google