Presentation is loading. Please wait.

Presentation is loading. Please wait.

Global Trigger Upgrades for SLHC Vienna, Global Trigger Group A.Taurok, C.-E. Wulz SLHC Workshop, FNAL, 19 Nov. 2008.

Similar presentations


Presentation on theme: "Global Trigger Upgrades for SLHC Vienna, Global Trigger Group A.Taurok, C.-E. Wulz SLHC Workshop, FNAL, 19 Nov. 2008."— Presentation transcript:

1 Global Trigger Upgrades for SLHC Vienna, Global Trigger Group A.Taurok, C.-E. Wulz SLHC Workshop, FNAL, 19 Nov. 2008

2 19 Nov. 2008A. Taurok, C.-E. Wulz2 Global Trigger Concept for LHC and SLHC Synchronize all Trigger Objects to arrive at the same time at the logic chip. –2008 Version: Muons: done by GMT; Calo_objects: done by PSB; TechTrig: done by PSB –SLHC Version: Muons: done by GMT; Calo_objects: done by GCT; TechTrig: done by SYNC chip Tracker: done by Tracker_Trigger Send all Trigger Objects into one chip to make any correlation between them. Use a FPGA to change trigger conditions as required by physics –New trigger setup:  configure FPGA with new trigger conditions –New parameter values for same setup: 2008 Version: Load new ET or pT thresholds and prescale values by software SLHC Version: Load all values by software Calculate physics trigger algorithms in parallel (FPGA branch) –2008 Version: 128 Algorithms limited by board layout, connectors and chip size –SLHC Version: Extend to ‘nn’ Algorithms  ‘Algo’ signals inside chip Chip size will be the only restriction Final OR mask for all Algorithm bits; Prescaler & Counter for each Algorithm –SLHC: some other requirement ?? SLHC Version: –Array of DSPs for complex physics triggers C++ code  trigger program with constant latency(!) –1 optical link for each trigger object of 64 bits/40MHz

3 19 Nov. 2008A. Taurok, C.-E. Wulz3

4 19 Nov. 2008A. Taurok, C.-E. Wulz4 CMS Level1 Global Trigger scheme FDL GTL 128 Algo GMT PSB GCT Sync delay Sync delay REC COND  ALGO PSB Sync delay Technical Triggers FDL chip GTL COND chip GMT Optical links GCT Sync delay Sync delay SYNC Sync delay ‘Conditions’ COND chip nn Algo (and, or, not) FPGA: Standard Conditions - FPGA: DSPs (XC5V100T) Totem, Castor, ZDC, … Tracker Trigger Sync delay Prescalers & Trigger Counters Final OR Final OR COND  ALGO LHC SLHC Tracker ‘Conditions’ Prescalers & Trigger Counters Totem, Castor, ZDC, …

5 19 Nov. 2008A. Taurok, C.-E. Wulz5 Input to Global Trigger Global Calorimeter Trigger (GCT): possible reduction of trigger data 4 eg, 4 isol. eg      eg’s with ISOLATION bit 4 central jets, 4 forward jets      jets 4 tau jets total_E T, H T  apply set of thresholds in GCT and send resulting bits to FDL chip missing_ET  HF ring ETs, etc. More than 4 objects per type: 5 or 6 (?)  Simulation for SLHC Global Muon Trigger (GMT): 4 muons  p   mip, iso, charge, quality  Tracker Trigger: Tracks/jets with  and   COND chips ‘Conditions’ calculated in Tracker Trigger  FDL chip

6 19 Nov. 2008A. Taurok, C.-E. Wulz6  Correlation TEMPLATE Missing Energy TEMPLATE Predefined VHDL code Single particle TEMPLATE Parameters ET thresholds 1,2  window 1,2 Missing Energy threshold  Correlation ieg1 ieg2 ieg3 ieg4 Find 2 out of 4 particles fulfilling all conditions IEG condition: ieg2wsc Combinatorial logic: Algorithm = ieg2wsc and MET Missing E T condition: MET ALGO bit (i) Final_OR Single particle thr2,  window2 Single particle thr2,  window2 Single particle thr2,  window2 Single particle thr2,  window2 Single particle thr1,  window1 Single particle thr1,  window1 Single particle thr1,  window1 Single particle thr1,  window1 ieg1 ieg4 ieg2 ieg3 ieg1 ieg4 ieg2 ieg3 CMS Global Trigger standard Algorithm in FPGA: example Mask, Veto_mask prescalers Standard CONDITION chip FDL chip

7 19 Nov. 2008A. Taurok, C.-E. Wulz7 CONDITION chip with DSP array, RISCs DSP Condition program Trigger objects (GCT, GMT, TrackerTr…) Parameters Condition bit Parallel or tree structures DSP Trigger objects Latency  Algorithm logic in FDL chip Constraints: # of Conditions  # of DSPs # of instructions  latency limit Keep pipeline structure Latency = # of instructions Hardwired logic* *) if DSPs are implemented in FPGA XC5VFX100T: 256 DSP48E(550MHz), 4 Ethernet MAC, 3 PCIexpress end points, 16 GTX RocketIO (6.5Gb/s) 680 IO (1.25Gb/s LVDS) Condition bit OR

8 19 Nov. 2008A. Taurok, C.-E. Wulz8 Global Trigger board for SLHC (‘Single board’ option) 2 sets of opt. rcvers RX: Serial  parallel COND_logic or DSP array Ethernet IP L1A_daq + Serial TX LVDS FDL chip nn Algo (and, or, not) Final OR COND chip SYNC Chip DAQ chip L1A_daq + Serial TX GCT: 5... GMT: 2 Tracker: ~2.. Parallel data LVDS Ethernet IP Control CPU Control CPU Ethernet IP Trigger Counters Prescalers Spy_mem‘s & Ringbuffers Spy_mem‘s & Ringbuffers Event builder CMS - DAQ LVDS Condition bits Ethernet IO Sync circuits Condition bits CLK, BCRES,... LVDS TIMING circuits LVDS CLK, BCRES,..

9 19 Nov. 2008A. Taurok, C.-E. Wulz9 Option with Custom MTCA backplane GT logic with AMC single width module from Imperial College & LosAlamos Lab. GCT 2 copies of 7 quadruplets à 64 bits 12/16 FPGA 72x72 SWITCH 20 16 12/16 FPGA 72x72 SWITCH 20 16 CONDITION CHIP 1+2 ALGO + FinOR (FDL) 12/16 FPGA 72x72 SWITCH 20 16 7 TrackerTrigger 2 copies of ≤5 links à 64 bits 5 AMC single width (h=73.8 mm, l=181.5 mm) 128 Technical Trigger bits from Conversion crate 2 12/16 FPGA 72x72 SWITCH 20 16 4 Central Trigger Control 8FinalOR 32x 8 (L1A, 5Bgo…) 1 Custom Backplane L1A.. directly or via Big_Conversion boards to TTC system Readout Board as double width AMC with SLINK mezzanine board Readout data Partition STATUS from 2 Big_Conversion boards 2 CMS_DAQ  512 Condition bits 8 3.2 Gbps optical links 3.2 Gbps backplane links NOT shown/defined: Global Muon Trigger Readout board with SLINK LVDS/Serial Conversion crate 1 Readout Board 1 1

10 19 Nov. 2008A. Taurok, C.-E. Wulz10 MTCA options: 40 MHz LVDS to Serial Conversion AMC modules (Vienna) Serial link (1.6 Gbps required) FPGA 8 RJ45 (59.2 x 25.5 mm) SMALL_CONVERSION card single width, full size (w=73.8 mm, l=181.5 mm, h=28.95 mm) 32 bits CONVERSION card double width,full size (w=148.8 mm, l=181.5 mm, h=28.95 mm) FPGA 64 bits/40MHz Serial link (3.2 Gbps required) INPUT MODE OUTPUT MODE INPUT MODE Serial link (1.6 Gbps required) FPGA 32 bits OUTPUT MODE Global Trigger: 128 Technical Trigger bits  4 SMALL_CONVERSION boards (INPUT mode) Central Trigger Control: 40x4 STATUS bits  5 SMALL_CONVERSION boards (INPUT mode) 8x4 EMULATOR CONTROL signals  1 SMALL_CONVERSION boards (OUTPUT mode) 32x8 L1A+BGo signals  8 SMALL_CONVERSION boards (OUTPUT mode) Global Trigger: 128 Technical Trigger bits  2 CONVERSION boards (INPUT mode) Central Trigger Control: 32x4 STATUS bits  2 CONVERSION boards (INPUT mode) 8x4x2 EMULATOR CTRL+STATUS  1 CONVERSION boards (I/O mode) 32x8 L1A+BGo signals  4 CONVERSION boards (OUTPUT mode)  Many boards!!  No front panel serial links  9 boards  Serial links (3.2 Gbps) on front panel FPGA I/O MODE 64 bits/40MHz Serial link (3.2 Gbps required) Synchronization, Monitoring FPGA 64 bits/40MHz Serial link (3.2 Gbps required) Monitoring LC duplex

11 19 Nov. 2008A. Taurok, C.-E. Wulz11 Optical connectors MTP connector: 18 mm x 40(space on board); 11.2 mm from board edge to front side, h= 11mm without heatsink SFP+ connector: transcvr, w=13,7, L=56.5, h=8.6mm LC connector: w=4.52 mm, h=5.7 Duplex LC: 6.25mm middle-middle  ~14 mm Panduit MTP module: FC9-24-10Y or FCXO-… 24 single mode fibers9/125, 2mtp to 12 duplex LC, w = 88.9 mm. L=144.2, h=35.3 Avago optical transcvr: duplex LC with 6.25mm middle-middle; w= 14.9 or 13.6; h= 12.4mm double width AMC boards (h=148.8 mm, l=181.5 mm) Conversion board: AFBR-57R5AEZ 4.25 Gbps, 850nm VCSEL, SFP duplex LC (Lucent) FPGA 35x35mm 20x20mm

12 19 Nov. 2008A. Taurok, C.-E. Wulz12 Option with Standard MTCA backplane: Crate examples Single width shelf Example: Single width shelf (Schroff/Pentair) Mechanical problems  Ruggedized crates from other suppliers: vibration, shock isolation Example: single width Cube (Elma) Example: Double width shelf (Schroff/Pentair)

13 19 Nov. 2008A. Taurok, C.-E. Wulz13 Option with Standard MTCA backplane: Example of standard MCH (MTCA carrier hub) module Tundra TSi578 (Tundra Web page) RapidIO 1.25, 2.5, and 3.125 Gbits/s per port NAT-MCH (www.nateurope.com)www.nateurope.com Central management and data switching entity Fast Ethernet  CPU management Giga-Ethernet  uplink to backplane CPU: carrier-,shelf-, system manager Fabric D-G: Serial Rapid I/O (PICMG AMC.4) Fabric A: Gigabit Ethernet Fabric B: Serial Attached SCSI Clock mezzanine NAT-MCN Clock mezzanine

14 19 Nov. 2008A. Taurok, C.-E. Wulz14 Double width TCA board for GT 3.2 Gbps Port4(8) Port5(9) Port6(10) Port7(11) Port0,1 double width,full size (w=148.8 mm, l=181.5 mm, h=28.95 mm) 148.8 mm 181.5 mm MTP 12 REC MTP 4 REC, 4 TX MTP 12 REC ~18x40mm FPGA ~35x35mm FPGA CTRL FPGA 3.2 Gbps BLUE LINES: ‘nn’ Serial links between FPGA <1 Gbps ~ 16 bits à 40 MHz ~32 parallel LVDS 40/80 MHz 1 Gbps CLOCKJTAGPOWER MTP 4 REC, 4 TX Port links between Boards Speed depends on MCHUB RJ45 RJ45 Optional Ethernet

15 19 Nov. 2008A. Taurok, C.-E. Wulz15 Option with Standard MTCA backplane: GMT+GT crate with double width AMC modules (Vienna) GCT 2 copies of 7 quadruplets á 64 bits 12 COND1 FPGA Port4(8) 7 TrackerTrigger 2 copies of ~2 links à 64 bits 2 double width AMC boards (h=148.8 mm, l=181.5 mm) 128 Technical Trigger bits parallel LVDS 2 Standard Backplane COND2 FPGA spare FDL FPGA ALGO(GTL) + FinOR (FDL) Port5(9) Port6(10) Port7(11) CTRL FPGA port0,1 8FinalOR  Central Trigger Control 3.2 Gbps 12 IN+LFF FPGA Port4(8) IN+LFB FPGA AU FPGA GMT Global Muon Trigger Port5(9) Port6(10) Port7(11) SRT+ CTRL port0,1 12 8r8tx GCT 504 M+Q bits CSC+fRPC 8 muons 4 4 DT+bRPC 8 muons 8 MCH1 fat pipe (Readout) MCH2 fat pipe (Trigger data) 4+4+2 4 to GTL 4 muons MTP connector: 12 fibers rec/tr 18 mm x 40 mm 2 CONVERSION cards 1 1 8r8tx 2 1 1 CMS_DAQ Readout board Readout board SLINK Readout Board

16 19 Nov. 2008A. Taurok, C.-E. Wulz16 Option with Standard MTCA backplane: Central Trigger Control Crate double width AMC boards (h=148.8 mm, l=181.5 mm) Central Trigger Control 32x 8 (L1A, 5Bgo…) Standard Backplane Readout Board with SLINK mezzanine board to be defined. 12 xxx FPGA Port4(8) TCS FPGA xxx FPGA Central Trigger Control & Readout Port5(9) Port6(10) Port7(11) TCSM+ CTRL port0,1 12 8r8tx MCH1 fat pipe (Monitoring) MCH2 fat pipe (Control data) 4+4+2 8FinalOR 32x 8 (L1A, 5Bgo…) EMULATORs 8x 4 bits status bits 8x 4 bits control signals Partition STATUS Parallel LVDS 21 CONVERSION card input mode 4 CONVERSION card output mode CONVERSION card I/O mode L1A, BGo… to TTC 32 x 8 signals 1 1 2 Readout board Control data: Bgo, L1A, Resync, Bcres…

17 19 Nov. 2008A. Taurok, C.-E. Wulz17 Conclusions Basic design idea for an upgraded Global Trigger exists. First idea was a VME implementation, using DSP’s. Implementation in MTCA technology now seems feasible. Double width AMC boards for GT and TCS logic is preferred. Standard and custom MTCA backplane options are considered.


Download ppt "Global Trigger Upgrades for SLHC Vienna, Global Trigger Group A.Taurok, C.-E. Wulz SLHC Workshop, FNAL, 19 Nov. 2008."

Similar presentations


Ads by Google