Presentation is loading. Please wait.

Presentation is loading. Please wait.

Recent progress in determination of fundamental constants (CODATA 2010-2014 and afterwards ) Savely G Karshenboim Pulkovo observatory (ГАО) (St. Petersburg)

Similar presentations


Presentation on theme: "Recent progress in determination of fundamental constants (CODATA 2010-2014 and afterwards ) Savely G Karshenboim Pulkovo observatory (ГАО) (St. Petersburg)"— Presentation transcript:

1 Recent progress in determination of fundamental constants (CODATA 2010-2014 and afterwards ) Savely G Karshenboim Pulkovo observatory (ГАО) (St. Petersburg) and Max-Planck-Institut für Quantenoptik (Garching)

2 Outline structure of input and output auxiliary data Rydberg and R p m e /m p  h mass of a particle independent constants G k (g-2)  progress: 2006 vs. 2010 problems

3 Structure of the input data and output values Auxiliary dataexact prior Auxiliary data = exact + the most accurate data which are to be evaluated prior the adjustment: R , m e /m p, atomic masses.  related data  related data: h/m, hN A... h related data h related data: e, e/h,... The lines (  ) are equations: e.g., theoretical expressions for h/M, the Lamb shift,... Some data are measured, a lot are derived: m p [kg], m e [Mev/c 2 ],... G is uncorrelated,... Auxiliary input data  related data h & related data data derived values independent data

4 Structure of the input data and output values Auxiliary dataexact prior Auxiliary data = exact + the most accurate data which are to be evaluated prior the adjustment: R , m e /m p, atomic masses.  related data  related data: h/m, hN A... h related data h related data: e, e/h, N A... The lines (  ) are equations: e.g., theoretical expressions for h/M, the Lamb shift,... Some data are measured, a lot are derived: m p [kg], m e [Mev/c 2 ],... G is uncorrelated; k, a ,...  & related data: h/m e, h·N A h & related data: h, e, N A derived values independent data: G, k, a  Auxiliary input data: c,  0 ; R ∞, R p, m e /m p

5 Structure of the input data and output values Auxiliary dataexact prior Auxiliary data = exact + the most accurate data which are to be evaluated prior the adjustment: R , m e /m p, atomic masses.  related data  related data: h/m, hN A... h related data h related data: e, e/h, N A... The lines (  ) are equations: e.g., theoretical expressions for h/M, the Lamb shift,... Some data are measured, a lot are derived: m p [kg], m e [Mev/c 2 ],... G is uncorrelated; k, a ,...  & related data: h/m e, h·N A h & related data: h, e, N A derived values independent data Auxiliary input data: c,  0 ; R ∞, R p, m e /m p k aa G

6 Example: multiplicative vs. additive: R ∞ vs.  equations: uncertainty: R ∞ ~ 10 -11  ~ 10 -9 – 10 -10  2 ~ 10 -4 × 10 -9 ` almost´ exact

7 Auxiliary data exact the most accurate:

8 Atomic & nuclear masses

9 Rydberg constant hydrogen & deuterium spectroscopy electron-proton elastic scattering Lamb shift in muonic hydrogen

10 Rydberg constant hydrogen & deuterium spectroscopy electron-proton elastic scattering Lamb shift in muonic hydrogen LKP (Paris), MPQ (Garching),...

11 Rydberg constant hydrogen & deuterium spectroscopy electron-proton elastic scattering Lamb shift in muonic hydrogen MAMI = Mainzer Mikrotron old world data

12 Rydberg constant hydrogen & deuterium spectroscopy electron-proton elastic scattering Lamb shift in muonic hydrogen CREMA collaboration @ PSI

13 Proton radius puzzle

14 electron-to-proton mass ratio cyclotron frequencies of e & p (UWash) g factor of a bound e in H-like ion (magnetic moment precession vs. ion cyclotron frequency) @ Mainz antiprotonic He spectroscopy (ASACUSA @ CERN)

15 [A r (e)– 0.000 548 579 909 4] × 10 12 Electron mass: TGFC meeting 10 -9 A r (e) CODATA 2010 GSI-02 (C) Uwash-95 GSI-04 (O) CERN-06/10 MPIK-14 -3.9 parts in 10 10 image charges interaction correction not applied 2010 Anti-protonic Helium

16  –related data equations: m e /m p m p in u m at in u input data  h/m e h/m p h/m at

17  –related data equations: m e /m p m p in u m at in u input data  h/m e h/m p h/m at output h·N A

18  –related data

19 QED vs. Penning trap: a e recoil spectroscopy h/m Rb h/m Cs quantum Hall standard vs calculable capacitor: R K

20  –related data QED vs Penning trap: a e recoil spectroscopy h/m Rb h/m Cs

21  –related data QED vs Penning trap: a e recoil spectroscopy h/m Rb h/m Cs 5-loop corrections to (g-2) e

22  –related data QED vs. Penning trap: a e recoil spectroscopy h/m Rb h/m Cs quantum Hall standard vs calculable capacitor: R K

23 2014 Input data related to the Fine-structure constant: TGFC meeting  2 : 5.82 DOF: 2 Prob.  2 : 5.8 % R B : 1.71 Max. reduced residuals: 1.51, 1.70 ‘CODATA-14’ Rel. Unc.: 2.3 × 10 -10

24 Quantum Hall effect and a standard of resistance W. Poirier, Les Houches, 2007

25 Needs for a `theory´ for QHE steps rational universal relation to 

26 Needs for a `theory´ for QHE steps rational universal relation to 

27 h, e, N A and related data known from  block h·N A h/m e input: h e N A output m e  B

28 h, e, N A and related data

29

30 h, e, N A : the most important data watt balance Avogadro constant from ehrhiched Si

31 watt-balance B. Jeanneret, Les Houches, 2007

32 Josephson effect and quantum volt stardard B. Jeanneret, Les Houches, 2007

33 watt-balance B. Jeanneret, Les Houches, 2007

34 h, e, N A : the most important data watt balance Avogadro constant from ehrhiched Si

35 Monocrystale of 28 Si monocrystale ~ 1 kgisotopic composition 28 Si: 92% 29 Si: 5% 30 Si: 3%

36 Monocrystale of 28 Si monocrystale ~ 1 kgisotopic composition 28 Si: 92% 99.985% 29 Si: 5% 30 Si: 3%

37 Monocrystale of 28 Si monocrystale ~ 1 kgisotopic composition 28 Si: 92% 99.985% 29 Si: 5% 30 Si: 3%

38 Monocrystale of 28 Si monocrystale ~ 1 kgisotopic composition 28 Si: 92% 99.985% 29 Si: 5% 30 Si: 3%

39 h, e, N A : the most important data watt balance Avogadro constant from ehrhiched Si problem remains 

40 h, e, N A : the most important data watt balance Avogadro constant from ehrhiched Si the problem remains in 2010

41 2014 Input data related to the Planck constant: TGFC meeting

42 Planck constant (2015) 5.6  10 –8 1.8  10 –8 Relative combined standard uncertainty 2.0  10 –8

43 h = 6.626 070 038(81) × 10 -34 J sec [1.2 × 10 -8 ]  2 : 8.49 DOF: 4 Prob.  2 : 7.52% R B : 1.45 Max. reduced residuals: 1.96, 1.84 The problem is resolved

44 Independent constants

45 Independent constants: G  G/G ~ 10 -4 Kramer et al., 2006 IESR, 2010 BIPM 1889

46 Independent constants: G    

47 Independent constants: G    

48 G = 6.67408(31)×10 -11 m 3 kg -1 s -2 [4.7×10 -5 ]: TGFC meeting With expansion factor of 6.3  2 : 8.05 DOF: 13 Prob.  2 : 84% R B : 0.79 Max. reduced residuals: -1.98, 1.44

49 Independent constants: k  

50 4b) 2014 Input data related to the Boltzmann constant: TGFC meeting  2 : 5.50 DOF: 7 Prob.  2 : 60.0% R B : 0.89 Max. reduced residuals: -1.28, 1.55

51 “Improving acoustic determinations of the Boltzmann constant with mass spectrometer measurements of the molar mass of argon,” I. Yang, L. Pitre, M. R. Moldover, J. Zhang, X. Feng, and J. S. Kim1, Metrologia, available online November 2015

52 k = 1.380 648 52(79) × 10 -23 J K -1 [5.7 × 10 -7 ]  2 : 1.98 DOF: 8 Prob.  2 : 98.0% R B : 0.50 Max. reduced residuals: -0.72, 0.66

53 Progress

54

55

56 Problems R ∞ & R p m e /m p  h G k

57 Problems R ∞ & R p m e /m p  h G k a  + better accuracy in scattering + new method for R p - discrepancy in data

58 Problems R ∞ & R p m e /m p  h G k + slow progress in two methods + no discrepancies overlap with  data

59 Problems R ∞ & R p m e /m p  h G k + better accuracy + two methods sensitivity to 5 loops + sensitivity to 5 loops

60 Problems R ∞ & R p m e /m p  h G k + natural-silicon discrepacy resolved by 2010 + better accuracy for Avodagro + discrepancy with NIST watt-balance resolved

61 Problems R ∞ & R p m e /m p  h G k + natural-silicon discrepacy resolved by 2010 + better accuracy for Avodagro + discrepancy with NIST watt-balance resolved

62 Problems R ∞ & R p m e /m p  h G k + more accurate results – bigger scatter

63 Problems R ∞ & R p m e /m p  h G k + more accurate results + more methods consistency fixed with isotopic abundance of Ar + consistency fixed with isotopic abundance of Ar + efforts for atomic/molecular spectroscopy

64

65 Towards a quantum SI system the ampere to be defined via a fixed value of e the kilogram to be defined via a fixed value of h the kelvin it to be defined via a fixed value of k to be reproduced from ohm (quantum Hall effect) and volt (Josephson effect) to be reproduced with watt balances and Avogadro spheres


Download ppt "Recent progress in determination of fundamental constants (CODATA 2010-2014 and afterwards ) Savely G Karshenboim Pulkovo observatory (ГАО) (St. Petersburg)"

Similar presentations


Ads by Google