Presentation is loading. Please wait.

Presentation is loading. Please wait.

Evolution of the orbital Peierls state with doping

Similar presentations


Presentation on theme: "Evolution of the orbital Peierls state with doping"— Presentation transcript:

1 Evolution of the orbital Peierls state with doping
Neutron scattering in Y1-xCaxVO3 C. Ulrich1, J. Fujioka2, G. Khaliullin1, M. Reehuis3, K. Schmalzl4, A. Ivanov4, K. Hradil5, S. Miyasaka2, Y.Tokura2, and B. Keimer1 1Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany 2University of Tokyo, Tokyo, Japan 3Hahn-Meitner-Institut, Berlin, Germany 4Institut Laue-Langevin, Grenoble, France 5FRM II, Munich, Germany physics of the 3d simple cubic perovskites spin, charge, orbital degrees of freedom YVO3 : 3d2 two magnetic phases (C- and G-type) Krakow, 20. June 2008

2 Crystal Structure 3D - perovskite structure Pm3m
g - O rbital t 2g x 2 y 3z r 3 z yz xz xy Jahn Teller Aufspaltung splitting cubic splitting tetragonal VO6 octahedra Y Pm3m ideal cubic perovskite Pbnm GdFeO3 - type distortion Tilt and rotation of the VO6 octahedra Distortion of the VO6 octahedra

3 YVO3: Elastic Neutron Scattering
m0 = 1.72 mB / V3+-ion m0 = 1.05 mB / V3+-ion

4 YVO3: Low Temperature Phase
conventional orbital order

5 YVO3: High Temperature Phase
C-type reduced magnetic moment total: m0 = 1.05 mB/V3+ total ordered moment: 2.00 mB (free ion moment) 1.72 mB (ordered moment of the G-type phase) canting angle = 160 out of plane C-type: mx = 0.49 mB my = 0.89 mB G-type: mz = 0.30 mB C. Ulrich et al., PRL 91, (2003).

6 YVO3: High Temperature Phase
overall collapse of the magnon band width (20 meV C-type vs. 35 meV G-type) band width larger in the ferromagnetic c-direction than in the antiferromagnetic ab-plane (assuming Goodenough-Kanamori rules one would expect the opposite) Excelent fit obtained by using three exchange parameters: Jab = 2.6 meV, Jc1 = -2.2 meV, Jc2 = -4 meV => dimerization of exchange bonds along the c-axis C. Ulrich et al., PRL 91, (2003).

7 Resonating Orbitals in the YVO3
xz xz / yz yz xy xy undistorted xy Pbnm phase G-type C-type c 77 K 116 K 210 K G-type phase: T < 77 K strong JT effect orbitally ordered phase C-type phase: 77 K < T < 116 K static xy orbital stabilizes the AF magnetic order in plane orbital fluctuations along the c-axis between xz and yz orbital orbital pseudospin t = ½, ) )( 1 ( 2 4 + = å i SE S J H t Khaliullin et al., PRL 86, 3879 (2001).

8 Orbital Peierls State Orbital Peierls State c
Consequence of the orbital fluctuations C-type phase: 77 K < T < 118 K c orbital singlet spin triplet strong ferro. weak ferro. strong ferro. G. Khaliullin et al., PRL 86, 3879 (2001). C. Ulrich et al., PRL 91, (2003). P. Horsch et al., PRL 91, (2003). A.M. Oleś et al., PRB 75, (2007). structural evidence for the dimerized phase Pb11: A.A. Tsvetkov et al., PRB 69, (2004).

9 LaVO3: Inelastic Neutron Scattering
Tstruc. = 145 K Pbnm monoclinic P21/a Tmag. = 143 K C-type, spins within the ab-plane magnon phonon no splitting into an optical and acoustic magnon branch exchange parameters: Jab = 6.5 meV Jc = meV

10 LaVO3: Inelastic Neutron Scattering
L.D. Tung, D.M.K. Paul, University of Warwick, UK LaVO3 Tmag. = 136 K C-type ILL – experimental report

11 Effect of doping: 2 t2g Þ 1 t2g
Doping dependence of the Orbital Peierls State Y1-xCaxVO3 Effect of doping: 2 t2g Þ 1 t2g S. Miyasaka, PRL 85, 5388 (2000). J. Fujioka, PRB 72, (2005). Y. Tokura, University of Tokyo G-type phase disappears at 1.5 % Ca doping C-type mag. phase (Orbital Peierls phase) is robust 50% Ca-doping: Metal Insulator Transition

12 Doping dependence of the Orbital Peierls State
Y1-xCaxVO3: Magnetic phase transition temperatures decrease with doping C-type phase: magnetic structure at T = 85 K almost unchanged G-type phase: magnetic moment decreases with doping

13 Y1-xCaxVO3: C-type phase
Doping dependence of the Orbital Peierls State YCaVO % K Y1-xCaxVO3: C-type phase Y1-xCaxVO % K YCaVO % K

14 Doping dependence of the Orbital Peierls State
Y1-xCaxVO3 IN22 ILL-Grenoble 2 % PUMA FRMII-Munich 5 % Magnon Magnon Phonon raw data taken at the IN22/ILL-Grenoble and Puma/FRMII-Munich data were taken above and below the magnetic phase transition

15 new Si-monochromator IN20/ILL
Doping dependence of the Orbital Peierls State new Si-monochromator IN20/ILL

16 Doping dependence of the Orbital Peierls State
(0.5,0.5,1.25) (0.5,0.5,1) spin gap slight increase in the spin wave energies Orbital Peierls State is confirmed and even more robust

17 Y1-xCaxVO3: 1 % G-type phase perfect orbitally ordered state
YVO3 : G-type phase Y1-xCaxVO3: 1 % G-type phase Magnetic structure and spin wave dispersion as in YVO3 perfect orbitally ordered state

18 Y1-xCaxVO3: 1 % CG-mixed phase
YVO3 : G-type phase Y1-xCaxVO3: 1 % CG-mixed phase (1/2, 1/2, 0) C-type magnetic Bragg peak Depending in the cooling history - pure G-type phase at T = 2 K - C-type / G-type mixed phase Hysteresis between the C-type and G-type phase

19 Y1-xCaxVO3: 1 % CG-mixed phase
YVO3 : CG-mixed phase Y1-xCaxVO3: 1 % CG-mixed phase spin gap C-type G-type Magnon branches of the C-type phase and G-type phase coexist Spin gap demonstrates: microscopic interaction between both phases

20 Conclusions Orbital fluctuations Y1-xCaxVO3 x = 0% 1% 2% 5%
magnetic structure and dynamics measured by neutron scattering Orbital fluctuations C-type phase is stabilized by realization of spin-orbital chains in 3D insulator entropy driven orbital Peierls state identified Effects of Ca-doping: G-type – orbitally ordered phase disappears rapidly C-type phase: orbital Peierls state is stabilized C/G-mixed phase with a microscopic interaction

21 LaVO3: Inelastic Neutron Scattering
Tstruc. = 145 K Pbnm monoclinic P21/a Tmag. = 143 K C-type, spins within the ab-plane


Download ppt "Evolution of the orbital Peierls state with doping"

Similar presentations


Ads by Google