Presentation is loading. Please wait.

Presentation is loading. Please wait.

Separate Contributions of Kinematic and Kinetic Errors to Trajectory and Grip Force Adaptation When Transporting Novel Hand-Held Loads Frederic Danion,1*

Similar presentations


Presentation on theme: "Separate Contributions of Kinematic and Kinetic Errors to Trajectory and Grip Force Adaptation When Transporting Novel Hand-Held Loads Frederic Danion,1*"— Presentation transcript:

1 Separate Contributions of Kinematic and Kinetic Errors to Trajectory and Grip Force Adaptation When Transporting Novel Hand-Held Loads Frederic Danion,1* Jonathan S. Diamond,2* and J. Randall Flanagan2,3 1 CNRS and Aix-Marseille University, 2 Centre for Neuroscience Studies and 3 Department of Psychology, Queen’s University The Journal of Neuroscience, January 30, 2013 33(5):2229 –2236 Motor Control Journal Club May 20, 2013

2 Adaptation to novel dynamics Initially, unknown mapping between applied force and motion when interacting with new object Kinematic errors: predicted ≠ actual trajectory  Perturbed trajectory Kinetic errors: predicted ≠ actual load force  Poor modulation of grip force With practice, people adapt to new dynamics (update internal model)

3 Adaptation and error Trajectory adaptationGrip force adaptation Kinematic error√? Kinetic error?√ Trajectory adaptation Hand path straightens out Grip force adaptation Better grip-load modulation

4 Common or separate internal models? Do kinematic and kinetic errors update the same model, or separate models? Modified from Wolpert and Flanagan (2001) Prediction error used to updated internal model (predictor)

5 Main ideas of experiment Compare grip force adaptation with and without kinematic errors Compare trajectory adaptation with and without prior exposure to kinetic errors

6 Experimental setup Point-to-point movements Object in hand Dynamics rendered by Phantom Object cursor visible (contextual clue) Force channel WristBOT remove kinematic error resulting from moving object Wrist cursor and slider visible (contextual clue) Explore channel (distinguish from object dynamics) Movement speed Standard: 400 ms Fast: 200 ms

7 Experimental protocols Group A Block 1: practice Block 2: practice (control) Block 3: grip force and trajectory adaptation with kinetic + kinematic errors

8 Experimental protocols Group B Block 1: practice Block 2: grip force adaptation with kinetic errors only Block 3: trajectory adaptation (facilitated by previous experience of kinetic errors?)

9 Experimental protocols Group C Block 1: practice Block 2: grip force adaptation with kinetic errors only (increase salience of object dynamics) Block 3: trajectory adaptation (facilitated by previous experience of kinetic errors?)

10 Data analysis Grip-load force coupling – Cross-correlation coefficient (at zero lag) Trajectory perturbation – Peak-to-peak lateral deviation Adaptation – Fit exponential curve: y = ae bx + c

11 Results: Grip force adaptation in channel Poor grip-load correlation in 1 st trial Object path only slightly perturbed Increase in correlation over trials Asymptote: B > C (higher because of consecutive trials?) Load force scaled with object velocity

12 Results: Transfer of grip force adaptation outside channel Maintain predictive grip force control - good grip-load correlation in 1 st trial (Higher magnitude?) Object and wrist paths greatly perturbed Corrective movements apparent in velocity profile Benefit of prior exposure to object dynamics in the channel No benefit of additional kinematic errors – similar learning rates for 3 groups Higher R without channel than with channel for groups A and B?

13 Results: Trajectory adaptation outside channel No benefit of prior exposure to object dynamics (kinetic errors) in channel (groups B and C)

14 Experimental protocols Group D Block 1: practice Block 2: grip force adaptation with kinetic errors only (generalize over different speeds?) Block 3: trajectory adaptation (facilitated by previous experience of kinetic errors?) 2x speed  2x load force

15 Results: Generalization across speeds within channel Predictive grip force generalized across movement speeds Exposure to object dynamics at different movements speeds in the channel did not facilitate trajectory adaptation after the channel was removed.

16 Summary of grip force adaptation Kinetic errors are sufficient to drive grip force adaptation – Equivalent grip force adaptation with channel (kinetic errors) and without channel (kinetic + kinematic errors) – Importance of tactile vs. proprioceptive information Involves updating of internal model of object dynamics – Generalized over different movement speeds

17 Summary of trajectory adaptation Kinematic errors are necessary for arm movement adaptation – Prior experience of moving the object in the channel (kinetic errors) did not benefit trajectory adaptation when moving without the channel Suggests distinct internal models of object dynamics for grip force and trajectory control


Download ppt "Separate Contributions of Kinematic and Kinetic Errors to Trajectory and Grip Force Adaptation When Transporting Novel Hand-Held Loads Frederic Danion,1*"

Similar presentations


Ads by Google