Presentation is loading. Please wait.

Presentation is loading. Please wait.

Short review of Modern Optical Instrumentation for Astronomy & Astrophisics LNF OAR Sinergy Workshop Frascati 16-17 Aprile 2014 F. Pedichini.

Similar presentations


Presentation on theme: "Short review of Modern Optical Instrumentation for Astronomy & Astrophisics LNF OAR Sinergy Workshop Frascati 16-17 Aprile 2014 F. Pedichini."— Presentation transcript:

1 Short review of Modern Optical Instrumentation for Astronomy & Astrophisics LNF OAR Sinergy Workshop Frascati 16-17 Aprile 2014 F. Pedichini

2 INAF Osservatorio Astronomico di Roma tech. team D. Lorenzetti (coordinator) M. Centrone (Lab Wiev software) F. Dalessio (electronic, software) A. Di Paola (control software) G. Li Causi (interferometry, end2end sim.) F. Pedichini (detectors, controls, optics) R. Speziali (cryogenics, mechanic design) V. Testa(data reduction pipeline) F. Vitali (NIR cameras, spectroscopy) F. Ambrosino(control electronics) S. Antoniucci(interferometry) M. Stangalini(A.O., solar instrumentation)

3 Main Topics: Basic Optics Basic Optics Telescopes Detectors Imaging Spectroscopy Hot Stuff

4 Basic Optics: (atmosphere absorption spectra)

5 Basic Optics: ( atmosphere emission spectra) Night Sky Airglow molecular roto-vibrational lines. Thermal Black Body emission dominates beyond 2.15 µm Ground based Optical Astronomy lives in 0.35 ÷ 15 (33) µm wavelenght range due to transmission and emission of the Earth atmosphere. Baloons or Space are the right “stuff” to overcome this limit.

6 Basic Optics: ( ray-tracing & projection) The simplest Optics: Pinhole Camera Optics map a Spherical World (Heaven) onto an almost flat Surface (Detector) x

7 Main Topics: Basic Optics Telescopes Telescopes Detectors Imaging Spectroscopy Hot Stuff

8 Telescopes: (jargon) Aperture diameter [m]↑collects energy [γ] Focal lenght [m]↑magnify image Wavelenght [µm]↔physics, resolution Mechanical accuracy [µm]↓vibrations, stiffness Lens profile error[nm]↓image quality Atmosphere turb.[arcsec]↓ image blurring

9 Telescopes: (mirror vs lens) MIRRORLENS SIZE<8.5m<1.5m PRICE/Surf.$$$$$$ TOLERANCESλ/10λ/5 MATERIALS$$$$$ Mirrors are the right stuff for wide aperture and long focal

10 Telescopes: ( 1989 the first modern telescope ESO – NTT ) Aperture diameter [m]3.5 (f# 11) Wavelenght [µm]0.32 ÷ 2.5 Mount controldigital control Alt-Az on oil pad Lens profile error[nm]50 (active optic closed loop λ/10) Image blurring[arcsec]0.5 ÷ 0.8 (0.04 diff. limit) LocationLa Silla (Chile)2400 m

11 Telescopes: ( 1990 the space telescope HUBBLE ) Aperture diameter [m]2.5 (f# 17) Wavelenght [µm]0.25 ÷ 2.5 Mount controlinertia wheels and star sensor Lens profile error[nm]20 (the perfect optic) Image blurring[arcsec]0.06 (diffraction limited) LocationLow Earth Orbit (600 ÷ 1000 km)

12 Telescopes: ( the space telescope HUBBLE )

13 Telescopes: (1995 The Keck telescopes) Aperture diameter [m]2 x 10 (f# 15 ÷ 40) Wavelenght [µm]0.32 ÷ 10 Mount controlAlt-Az on oil pad Lens profile error[nm]50 (active optic segmented mirror) Image blurring [arcsec]0.3 ÷ 0.6 (0.040 quite diff. limit) LocationMauna Kea (Hawaii)4150 m

14 Telescopes: ( 1999 the data factory ESO VLT ) Aperture diameter [m]8.2 (f# 17) Wavelenght [µm]0.32 ÷ 13 Mount controldirect drive Alt-Az on oil pad Lens profile error[nm]50 (active optic tip-tilt stabilized) Image blurring [arcsec]0.4 ÷ 0.8 (0.015 diff. limit) More than 20 different instruments on 4 telescopes LocationParanal (Chile)2700 m

15 Telescopes: ( 2005 ESO VLT - UT4 and VLTI) Near Infrared Interferometry using 4 VLT units or auxiliary 1.5m movable telescopes: 3mas resolution @ 1.6µm UT4 - LASER assisted correction of atmospheric turbulence in the Near Infrared with adaptive optics

16 Telescopes: ( ESO VLT – NIR Orion Nebula)

17 Telescopes: (2004÷2007 the Large Binocular Telescope) Aperture diameter [m]2 x 8.4 (f# 15) Wavelenght [µm]0.32 ÷ 10 Mount controlAlt-Az on oil pad Lens profile error[nm]<50 (active and adaptive optic ) Image blurring [arcsec]0.3 ÷ 0.9 (0.015 diff. limit) Adaptive optics facility embedded in the secondary mirror LocationMount Graham (Arizona)3200 m

18 Telescopes: (the Large Binocular Telescope)

19 Telescopes: (2009 the space telescope HERSCHEL) Aperture diameter [m]3.5 (f# 8.7) Wavelenght [µm]50 ÷ 600 (2÷3K temperature) Mount controlinertia wheels and star sensor Lens profile error[nm]6000 (SiC mirror) Image blurring[arcsec]3.6 (diffraction limited) LocationL2 Lagrange point (1500000 km)

20 Telescopes vs Accelerators: (comparative story) 1930 Ø100 mm 1600 Ø15 mm 2010 Ø8.5 km 2010 Ø2x8.4 m 2030 Ø39 m ? 8x10 4 6x10 5 10

21 Main Topics: Basic Optics Telescopes Detectors Detectors Imaging Spectroscopy Hot Stuff

22 Detectors (CCD and CMOS) ADAD CCD ONE amplifier for ALL the pixels HIGH Bandwidth (hard) ADAD CMOS ONE amplifier for EACH pixel LOW Bandwidth (easy) ADAD ADAD ADAD ADAD ADAD

23 Detectors (r.o.n., Q.E. and wavelenght…) CCD ($$$ ÷ $$$$)CMOS ($ ÷ $$) N pixelmillions10 x millions r.o.n. [e-]3 ÷ 10 EM <11 ÷ 3 Speed [Mpix/s]0.1 ÷ 325 ÷ 100 Pitch [µm]9 ÷ 501 ÷ 15 Wavelegnht [µm]0.2 ÷ 10.3 ÷ 1 hybrid 0.5 ÷ 30 Typical dynamic ranges are from 10 to 16 bits with Q.E. > 80÷90% e2V CCD231-C6 6k x 6k 15 µm pixel Teledyne HAWAII NIR cmos 4k x 4k 15 µm pixel

24 This is the fastest photon counting detector working @ps timing. It may detect the phase of incoming photons Detectors (Avalanche Photo Diode) baseline B beam combiner fringe tracker adaptive optics In a next future it could allow optical interferometry in the digital domain as we do now with Radio yelding incredible resolutions ADC + d.s.p.

25 Main Topics: Basic Optics Telescopes Detectors Imaging Imaging Spectroscopy Hot Stuff

26 Imaging (S/N and detection)

27 Imaging (Large Binocular Camera) field of view ~ 23' x 23‘ 2 x 37.7 Megapixel sampling 0.23 arcsec/px INAF collaboration: Roma, Padova 2001÷7 (Roma responsible for P.I., detectors, cryogenic, controls, software, data reduction and observation, Padova opto-mechanics)

28 Imaging (L.B.C. U-R deep field) 33 hours in the U- band Seeing=1.1” 26 hours in the R- band Seeing=1.0” Data reduced by LSC (INAF- OARoma)

29 Main Topics: Basic Optics Telescopes Detectors Imaging Spectroscopy Spectroscopy Hot Stuff

30 Spectroscopy (basic concept) OBJECTIVE SPECTROSCOPY SLIT SPECTROSCOPY M.O.S. SPECTROSCOPY

31 Spectroscopy (MOONS and fibers) INAF OAR for ESO MOONS@VLT guidance, VPH, end to end simulation 1000 Fibers SPECTROSCOPE 77 Kelvin

32 Spectroscopy (MOONS end 2 end)

33 Spectroscopy (Integral Field Unit) Data Cube or Hyperspectral image MOSAIC for the E.E.L.T.

34 Hot Stuff Basic Optics Telescopes Detectors Imaging Spectroscopy Hot Stuff Hot Stuff

35 Hot Stuff (Adaptive Optics basic) Earth Orbit at 10pc Adaptive Optics needs a bright reference star to close the loop! 1 kHz

36 Hot Stuff (WLGSU Sodium LASER) Collaboration with ESO for A.O. LASER STAR generation and monitoring LGS @ 90 km Rayleigh scatter

37 Hot Stuff (Adaptive Optics advanced) Adaptive Optics can work at visible; running fast, saving the errors and doing blind de-convolution you get this…! Courtesy of S. Jefferies (Maui Air Force Lab)

38 Hot Stuff (Adaptive Optics advanced) SHARK & SHARK-Forerunner: 600nm A.O. at 1600 f.p.s. (goal 16÷17 mas. resolution) Io moons of Jupiter Simulated image of

39 Hot Stuff (Wavefront-Sensing) DIFFERENTIAL FLUXES (slopes) CENTROIDS Doing this above 1kHz with few photons…

40 Hot Stuff (Pixel-One cmos) OAR-INFN study for Infinite dynamic range with frame rate >>1 kHz 1.A micro lens about 1 mm wide sample the focal plane. 2.A “small” cmos-pixel converts photons to electrons and integrates the charge. 3.A local A/D digitizes at 8-16 bit and adds/stores the result. 4.The ASIC manages the self-reset, the control signals, the data transfer on the local bus and the integration time. A/D register State machine I/O data bus Ø 40÷4 µm 1000÷100 µm

41 Ø 40µm For lenses of 1 mm Ø it is possible to focus in a spot of only 40µm. Reduction factor of 1:25 possible if lens Ø >> λ Hot Stuff (micro-lenses)

42 1.The local A/D samples at kHz rates and digitally integrates the results. Slow, quiet but parallel! 2.The A/D can be as small as a few hundreds squared microns when using 8÷10 bits 3.The state machine manages all the processes and transfer data to host. 4.Actual CMOS tecnology produces pixels with RON less than one electron/sample 5.4000 pixel-ones can be arranged on less than 20x20 mm chip Hot Stuff (Pixel-One cmos)

43 EUROPRACTICE allows research institution to develop CMOS cameras using 180 nm-litography 45 prototipes cost 30 k€; you pay the Si surface about 30€/mm 2 not the complexity of the ASIC It is possible to start with less than 30k€ UMC CIS180 Image sensor 2P4M ULTRA diode Samples> 45 Matrix Chip2x24x45x510x10 Area Chip (mm2)41625100 APS x batch720 11254500 Chips x batch18045 Blocks x design1114 Cost (die)20400 81760 Packaging3000 Hot Stuff (Pixel-One cmos DIY)

44 ADCs IO LVDS Pixel / die = 5x5 (different) Total Pixels area 2500 µm2 Die area 5x5 mm2 32 bit Adder & comp Memory RF Control Logic Multiplexing Hot Stuff (Pixel-One DIY)

45 We can build array of Pixel_One on a single substrate and interconnect the data bus and control lines by means of an I/O digital circuit to a control computer interface. Basic computational power at the detector scale. I/O logic Hot Stuff (Pixel-One cmos)

46 AB DC …not only photon counts but Slopes or Centroids computed in parallell at pixel level … i+1,j …i,j+1…i,j-1 i,ji-1,j … Hot Stuff (Pixel-One computation) Pixel One is looking for applications outside astronomy andpartnerships

47 …waiting for the future E.E.L.T. Aperture39 m Mirror surface1200 m 2 F number17.7 # Focal lenght743 m Field of view5 x 5 arcmin 2 Scale0.27 arcsec/mm Focal plane size1071 mm (@ 5 arcmin) Thank you!


Download ppt "Short review of Modern Optical Instrumentation for Astronomy & Astrophisics LNF OAR Sinergy Workshop Frascati 16-17 Aprile 2014 F. Pedichini."

Similar presentations


Ads by Google