Presentation is loading. Please wait.

Presentation is loading. Please wait.

Holt Algebra 1 12-1 Inverse Variation Entry Task Solve each proportion. 1. 2. 3. 4. 10 4.2 2.6252.5.

Similar presentations


Presentation on theme: "Holt Algebra 1 12-1 Inverse Variation Entry Task Solve each proportion. 1. 2. 3. 4. 10 4.2 2.6252.5."— Presentation transcript:

1 Holt Algebra 1 12-1 Inverse Variation Entry Task Solve each proportion. 1. 2. 3. 4. 10 4.2 2.6252.5

2 Holt Algebra 1 12-1 Inverse Variation I can Identify, write, and graph inverse operations. Learning Target

3 Holt Algebra 1 12-1 Inverse Variation A relationship that can be written in the form y =, where k is a nonzero constant and x ≠ 0, is an inverse variation. The constant k is the constant of variation. Inverse variation implies that one quantity will increase while the other quantity will decrease (the inverse, or opposite, of increase). Multiplying both sides of y = by x gives xy = k. So, for any inverse variation, the product of x and y is a nonzero constant. Remember! A direct variation is an equation that can be written in the form y = kx, where k is a nonzero constant.

4 Holt Algebra 1 12-1 Inverse Variation These phrases are important to understand

5 Holt Algebra 1 12-1 Inverse Variation Example 1A: Identifying an Inverse Variation Tell whether each relationship is an inverse variation. Explain. Method 1 Write a function rule. Can write in y = form. The relationship is an inverse variation. Method 2 Find xy for each ordered pair. 1(30) = 30, 2(15) = 30, 3(10) = 30 The product xy is constant, so the relationship is an inverse variation.

6 Holt Algebra 1 12-1 Inverse Variation Example 1B: Identifying an Inverse Variation Tell whether each relationship is an inverse variation. Explain. Method 1 Write a function rule. Cannot write in y = form. The relationship is not an inverse variation. y = 5x Method 2 Find xy for each ordered pair. 1(5) = 5, 2(10) = 20, 4(20) = 80 The product xy is not constant, so the relationship is not an inverse variation.

7 Holt Algebra 1 12-1 Inverse Variation Example 1C: Identifying an Inverse Variation Tell whether each relationship is an inverse variation. Explain. 2xy = 28 Find xy. Since xy is multiplied by 2, divide both sides by 2 to undo the multiplication. xy = 14 Simplify. xy equals the constant 14, so the relationship is an inverse variation.

8 Holt Algebra 1 12-1 Inverse Variation Tell whether each relationship is an inverse variation. Explain. Method 1 Write a function rule. Cannot write in y = form. The relationship is not an inverse variation. y = – 2x Method 2 Find xy for each ordered pair. – 12 (24) = – 228, 1( – 2) = – 2, 8( – 16) = – 128 The product xy is not constant, so the relationship is not an inverse variation. Check It Out! Example 1a

9 Holt Algebra 1 12-1 Inverse Variation Tell whether each relationship is an inverse variation. Explain. Check It Out! Example 1b Method 1 Write a function rule. Can write in y = form. The relationship is an inverse variation. Method 2 Find xy for each ordered pair. 3(3) = 9, 9(1) = 9, 18(0.5) = 9 The product xy is constant, so the relationship is an inverse variation.

10 Holt Algebra 1 12-1 Inverse Variation 2x + y = 10 Tell whether each relationship is an inverse variation. Explain. Check It Out! Example 1c Cannot write in y = form. The relationship is not an inverse variation.

11 Holt Algebra 1 12-1 Inverse Variation Since k is a nonzero constant, xy ≠ 0. Therefore, neither x nor y can equal 0, and no solution points will be on the x- or y-axes. Helpful Hint

12 Holt Algebra 1 12-1 Inverse Variation An inverse variation can also be identified by its graph. Some inverse variation graphs are shown. Notice that each graph has two parts that are not connected. Also notice that none of the graphs contain (0, 0). This is because (0, 0) can never be a solution of an inverse variation equation.

13 Holt Algebra 1 12-1 Inverse Variation Example 2: Graphing an Inverse Variation Write and graph the inverse variation in which y = 0.5 when x = – 12. Step 1 Find k. k = xy = – 12(0.5) Write the rule for constant of variation. Substitute –12 for x and 0.5 for y. = – 6 Step 2 Use the value of k to write an inverse variation equation. Write the rule for inverse variation. Substitute –6 for k.

14 Holt Algebra 1 12-1 Inverse Variation Example 2 Continued Write and graph the inverse variation in which y = 0.5 when x = – 12. Step 3 Use the equation to make a table of values. y –2 –4 x –1–1 0 124 1.53 6 undef. –6–6 –3–3 – 1.5

15 Holt Algebra 1 12-1 Inverse Variation Example 2 Continued Write and graph the inverse variation in which y = 0.5 when x = – 12. Step 4 Plot the points and connect them with smooth curves. ● ● ● ● ● ●

16 Holt Algebra 1 12-1 Inverse Variation Example 3: Transportation Application The inverse variation xy = 350 relates the constant speed x in mi/h to the time y in hours that it takes to travel 350 miles. Determine a reasonable domain and range and then graph this inverse variation. Use the graph to estimate how long it will take to travel 350 miles driving 55 mi/h. Step 1 Solve the function for y so you can graph it. xy = 350 Divide both sides by x.

17 Holt Algebra 1 12-1 Inverse Variation Example 3 Continued Step 2 Decide on a reasonable domain and range. x > 0 y > 0 Length is never negative and x ≠ 0 Because x and xy are both positive, y is also positive. Step 3 Use values of the domain to generate reasonable ordered pairs. 4.385.838.7517.5y 80604020x

18 Holt Algebra 1 12-1 Inverse Variation Example 3 Continued Step 4 Plot the points. Connect them with a smooth curve. ● ● ● ● Step 5 Find the y-value where x = 55. When the speed is 55 mi/h, the travel time is about 6 hours.

19 Holt Algebra 1 12-1 Inverse Variation Recall that sometimes domain and range are restricted in real-world situations. Remember!

20 Holt Algebra 1 12-1 Inverse Variation

21 Holt Algebra 1 12-1 Inverse Variation Example 4: Using the Product Rule Let and Let y vary inversely as x. Find Write the Product Rule for Inverse Variation. Substitute 5 for 3 for and 10 for. Simplify. Solve for by dividing both sides by 5. Simplify.

22 Holt Algebra 1 12-1 Inverse Variation Check It Out! Example 5 On a balanced lever, weight varies inversely as the distance from the fulcrum to the weight. The diagram shows a balanced lever. How much does the child weigh?

23 Holt Algebra 1 12-1 Inverse Variation Check It Out! Example 5 Continued Use the Product Rule for Inverse Variation. Substitute 3.2 for, 60 for and 4.3 for Simplify. Solve for by dividing both sides by 3.2. Simplify. The child weighs 80.625 lb.

24 Holt Algebra 1 12-1 Inverse Variation Homework Homework– p. 503 #6-11,19-27

25 Holt Algebra 1 12-1 Inverse Variation Check It Out! Example 3 The inverse variation xy = 100 represents the relationship between the pressure x in atmospheres (atm) and the volume y in mm ³ of a certain gas. Determine a reasonable domain and range and then graph this inverse variation. Use the graph to estimate the volume of the gas when the pressure is 40 atmospheric units. Step 1 Solve the function for y so you can graph it. xy = 100 Divide both sides by x.

26 Holt Algebra 1 12-1 Inverse Variation Step 2 Decide on a reasonable domain and range. x > 0 y > 0 Pressure is never negative and x ≠ 0 Because x and xy are both positive, y is also positive. Step 3 Use values of the domain to generate reasonable pairs. 2.53.34510y 40302010x Check It Out! Example 3 Continued

27 Holt Algebra 1 12-1 Inverse Variation Step 4 Plot the points. Connect them with a smooth curve. Check It Out! Example 3 Continued Step 5 Find the y-value where x = 40. When the pressure is 40 atm, the volume of gas is about 2.5 mm 3. ● ● ● ●

28 Holt Algebra 1 12-1 Inverse Variation The fact that xy = k is the same for every ordered pair in any inverse variation can help you find missing values in the relationship.

29 Holt Algebra 1 12-1 Inverse Variation Check It Out! Example 4 Write the Product Rule for Inverse Variation. Simplify. Substitute 2 for –4 for and –6 for Let and Let y vary inversely as x. Find Solve for by dividing both sides by –4.

30 Holt Algebra 1 12-1 Inverse Variation Example 5: Physics Application Boyle ’ s law states that the pressure of a quantity of gas x varies inversely as the volume of the gas y. The volume of gas inside a container is 400 in 3 and the pressure is 25 psi. What is the pressure when the volume is compressed to 125 in 3 ? Use the Product Rule for Inverse Variation. Substitute 400 for 125 for and 25 for Simplify. Solve for by dividing both sides by 125. (400)(25) = (125)y 2

31 Holt Algebra 1 12-1 Inverse Variation Example 5 Continued Boyle ’ s law states that the pressure of a quantity of gas x varies inversely as the volume of the gas y. The volume of gas inside a container is 400 in 3 and the pressure is 25 psi. What is the pressure when the volume is compressed to 125 in 3 ? When the gas is compressed to 125 in 3, the pressure increases to 80 psi.

32 Holt Algebra 1 12-1 Inverse Variation Lesson Quiz: Part I 1. Write and graph the inverse variation in which y = 0.25 when x = 12.

33 Holt Algebra 1 12-1 Inverse Variation Lesson Quiz: Part II 2. The inverse variation xy = 210 relates the length y in cm to the width x in cm of a rectangle with an area of 210 cm 2. Determine a reasonable domain and range and then graph this inverse variation. Use the graph to estimate the length when the width is 14 cm.

34 Holt Algebra 1 12-1 Inverse Variation Check It Out! Example 2 Write and graph the inverse variation in which y = when x = 10. Step 1 Find k. k = xy Write the rule for constant of variation. = 5 Substitute 10 for x and for y. = 10 Step 2 Use the value of k to write an inverse variation equation. Write the rule for inverse variation. Substitute 5 for k.

35 Holt Algebra 1 12-1 Inverse Variation Write and graph the inverse variation in which y = when x = 10. Step 3 Use the equation to make a table of values. Check It Out! Example 2 Continued x –4–2–10124 y –1.25–2.5–5undef.52.51.25

36 Holt Algebra 1 12-1 Inverse Variation Check It Out! Example 2 Continued Step 4 Plot the points and connect them with smooth curves. Write and graph the inverse variation in which y = when x = 10. ● ● ● ● ● ●

37 Holt Algebra 1 12-1 Inverse Variation Lesson Quiz: Part III 3. Let x 1 = 12, y 1 = – 4, and y 2 = 6, and let y vary inversely as x. Find x 2. –8–8


Download ppt "Holt Algebra 1 12-1 Inverse Variation Entry Task Solve each proportion. 1. 2. 3. 4. 10 4.2 2.6252.5."

Similar presentations


Ads by Google