Presentation is loading. Please wait.

Presentation is loading. Please wait.

Grain Shattering and Coagulation in Interstellar Medium Hiroyuki Hirashita (ASIAA, Taiwan) Huirong Yan (Univ. of Arizona) Kazu Omukai (NAOJ)

Similar presentations


Presentation on theme: "Grain Shattering and Coagulation in Interstellar Medium Hiroyuki Hirashita (ASIAA, Taiwan) Huirong Yan (Univ. of Arizona) Kazu Omukai (NAOJ)"— Presentation transcript:

1 Grain Shattering and Coagulation in Interstellar Medium Hiroyuki Hirashita (ASIAA, Taiwan) Huirong Yan (Univ. of Arizona) Kazu Omukai (NAOJ)

2 1.Motivation 2.Interstellar Turbulence 3.Effects of Coagulation on Star Formation Outline

3 1. Motivation Grain size distribution  Contains information on the production sources  Important for the extinction curve and the infrared emission SED What determines the grain size distribution?  Source (supernovae, AGB stars, etc.)  Modified by interstellar processing? We propose that the grain size distribution can be strongly modified by interstellar shattering and coagulation.

4 2. Interstellar Turbulence ISM is turbulent (often supersonic) (e.g., McKee & Ostriker 2007). Implication for shattering: c s ~ 10 km/s in warm (~ 8000 K) medium → above the shattering threshold (~ a few km/s). Implication for coagulation: v turb  grain thermal speed. → If grain motion is coupled with turbulence, grain-grain collision occurs frequently (e.g., Ossenkopf 1993).

5 Large grains tend to be coupled with larger motions. The Scale Length of Coupling vtvt a Gas drag timescale t d : (m H v )(  a 2 vn H )t d = m gr v. Grain motion is coupled with the gas motion on a scale l large enough: l ~ v t d = (4/3)as/(m H n H ) ~ (10/n H )(a/0.1  m) pc nHnH Kolmogorov turbulence: v ∝ l 1/3 Large grains tend to obtain larger velocities. m gr = (4/3)  a 3 s

6 MHD Turbulence Model Yan, Lazarian, & Draine (2004) Warm Ionized Medium (T ~ 8000 K, V A ~ 20 km/s) Dense Cloud (T ~ 10 K, V A ~ 1.5 km/s) Large grains tend to acquire large velocities.

7 Shattering and Coagulation Hirashita & Yan (2009) Shattering Shattering threshold: 2.7 km/s (silicate), 1.2 km/s (graphite) (Jones et al. 1996) Coagulation coagulation rate = grain- grain collision rate (sticking efficiency = 1) Threshold: ~ 10 3 cm/s

8 Results Warm ionized medium T = 8000 K n H = 0.1 cm -3 B = 3.4  G Dense cloud T = 10 K n H = 10 4 cm -3 B = 80  G Warm neutral medium T = 6000 K n H = 0.3 cm -3 B = 5.8  G Upper limit? Shattering of large grains on a short timescale Small grains are strongly depleted.

9 Effects on the Extinction Curves Warm ionized mediumDense cloud (1)The central position of the carbon bump is unchanged. (2)The UV slope correlates with the bump strength in the right sense.

10 Metallicity ( ∝ Dust/Gas) Dependence Dense cloud (10 Myr) with different metallicities Warm ionized medium (10 Myr) with different metallicities Inefficient in low-metallicity (<~ 1/10 Z  ) environments.

11 Scenario (1)The grain size distribution in the formation by supernovae (or AGB stars) is preserved if the metallicity is << 1/10 Z . (2)After the metallicity enrichment, grain processing in ISM should be considered (even if the age is young!!). (3)In considering the origin of the MRN size distribution, interstellar processing should be important.

12 (1)How about the denser regime? (2)Importance of dust grains in star formation: A)H 2 formation (H 2 is an efficient coolant for Z < 0.01 Z  ) ⇒ The grain surface S is important. B)Dust cooling ⇒ The grain opacity  P is important. 3. Effects of Coagulation on SF We calculate the variation of S and  P in star-forming (collapsing) clouds. Hirashita & Omukai (2009) Grain motion is assumed to be thermal.

13 Gas Evolution in Collapsing Clouds Omukai et al. (2005) H 2 formation on grain surface: important coolant for log (Z/Z  ) <  2 dust cooling (induce fragmentation) Omukai et al. (2005) Schneider et al. (2004) Numbers = log (Z/Z  )

14 Change of Grain Surface and Opacity by Coagulation

15

16 Physical Considerations ☆ Grain surface is dominated by small grains. → Once the smallest grains are affected by coagulation, S begins to decrease (however, H 2 formation occurs faster). t ff > t coag ⇔ n H > 10 7 (Z/Z  )  2 (T/30 K)  1 cm  3 ☆ Opacity (  P ∝  a 2 Q ∝ a 3 ) is only a function of mass as long as a <<. ⇒  P does not change even if coagulation proceeds. Coagulation has no effect on the thermal evolution in protostellar collapse.


Download ppt "Grain Shattering and Coagulation in Interstellar Medium Hiroyuki Hirashita (ASIAA, Taiwan) Huirong Yan (Univ. of Arizona) Kazu Omukai (NAOJ)"

Similar presentations


Ads by Google